toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nelson, J.A.; Bugbee, B. url  doi
openurl 
  Title Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures Type Journal Article
  Year 2014 Publication PloS one Abbreviated Journal PLoS One  
  Volume 9 Issue 6 Pages e99010  
  Keywords Plants  
  Abstract Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.  
  Address Crop Physiology Laboratory, Department of Plant Soils and Climate, Utah State University, Logan, Utah, United States of America  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:24905835; PMCID:PMC4048233 Approved no  
  Call Number GFZ @ kyba @ Serial 2233  
Permanent link to this record
 

 
Author Liu, J.D.; Goodspeed, D.; Sheng, Z.; Li, B.; Yang, Y.; Kliebenstein, D.J.; Braam, J. url  doi
openurl 
  Title Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants Type Journal Article
  Year 2015 Publication BMC Plant Biology Abbreviated Journal BMC Plant Biol  
  Volume 15 Issue Pages 92  
  Keywords Plants  
  Abstract BACKGROUND: The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. RESULTS: Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. CONCLUSIONS: Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest.  
  Address Department of BioSciences, Rice University, Houston, TX, 77005, USA. braam@rice.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2229 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:25879637; PMCID:PMC4396971 Approved no  
  Call Number LoNNe @ kyba @ Serial 1458  
Permanent link to this record
 

 
Author Margot, J.-L. url  doi
openurl 
  Title Insufficient Evidence of Purported Lunar Effect on Pollination in Ephedra Type Journal Article
  Year 2015 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 30 Issue 5 Pages 454-456  
  Keywords Animals; Plants; Moonlight  
  Abstract It has been suggested that the timing of pollination in Ephedra foeminea coincides with the full moon in July. The implication is that the plant can detect the full moon through light or gravity and that this trait is an evolutionary adaptation that aids the navigation by pollinating insects. Here we show that there are insufficient data to make such a claim, and we predict that pollinations of E. foeminea do not in general coincide with the full moon.  
  Address Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USADepartment of Physics and Astronomy, University of California, Los Angeles, California, USA jlm@astro.ucla.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:26316347 Approved no  
  Call Number LoNNe @ kyba @ Serial 1557  
Permanent link to this record
 

 
Author Sanders, D.; Kehoe, R.; Tiley, K.; Bennie, J.; Cruse, D.; Davies, T.W.; Frank van Veen, F.J.; Gaston, K.J. url  doi
openurl 
  Title Artificial nighttime light changes aphid-parasitoid population dynamics Type Journal Article
  Year 2015 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 5 Issue Pages 15232  
  Keywords Ecology; animals; plants  
  Abstract Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species and their specialist parasitoids. The light treatment reduced the abundance of two aphid species by 20% over five generations, most likely as a consequence of bottom-up effects, with reductions in bean plant biomass being observed. For the aphid Megoura viciae this effect was reversed under autumn conditions with the light treatment promoting continuous reproduction through asexuals. All three parasitoid species were negatively affected by the light treatment, through reduced host numbers and we discuss induced possible behavioural changes. These results suggest that, in addition to direct impacts on species behaviour, the impacts of ALAN can cascade through food webs with potentially far reaching effects on the wider ecosystem.  
  Address Environment &Sustainability Institute, University of Exeter, Cornwall Campus Penryn, Cornwall, TR10 9EZ, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:26472251; PMCID:PMC4607942 Approved no  
  Call Number LoNNe @ kyba @ Serial 1290  
Permanent link to this record
 

 
Author Reinberg, A.; Smolensky, M.H.; Touitou, Y. url  doi
openurl 
  Title The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research Type Journal Article
  Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 33 Issue 5 Pages 465-479  
  Keywords Moonlight; Commentary; Animals; Plants; Human Health  
  Abstract Biological rhythmicity is presumed to be an advantageous genetic adaptation of fitness and survival value resulting from evolution of life forms in an environment that varies predictably-in-time during the 24 h, month, and year. The 24 h light/dark cycle is the prime synchronizer of circadian periodicities, and its modulation over the course of the year, in terms of daytime photoperiod length, is a prime synchronizer of circannual periodicities. Circadian and circannual rhythms have been the major research focus of most scientists. Circa-monthly rhythms triggered or synchronized by the 29.5 day lunar cycle of nighttime light intensity, or specifically the light of the full moon, although explored in waterborne and certain other species, have received far less study, perhaps because of associations with ancient mythology and/or an attitude naturalistic studies are of lesser merit than ones that entail molecular mechanisms. In this editorial, we cite our recent discovery through multidisciplinary naturalistic investigation of a highly integrated circadian, circa-monthly, and circannual time structure, synchronized by the natural ambient nyctohemeral, lunar, and annual light cycles, of the Peruvian apple cactus (C. peruvianus) flowering and reproductive processes that occur in close temporal coordination with like rhythms of the honey bee as its pollinator. This finding led us to explore the preservation of this integrated biological time structure, synchronized and/or triggered by environmental light cues and cycles, in the reproduction of other species, including Homo sapiens, and how the artificial light environment of today in which humans reside may be negatively affecting human reproduction efficiency.  
  Address a Unite de Chronobiologie , Fondation A de Rothschild , Paris cedex 19 , France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:27019304 Approved no  
  Call Number LoNNe @ kyba @ Serial 1460  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: