|   | 
Details
   web
Records
Author Hey, M.H.; DiBiase, E.; Roach, D.A.; Carr, D.E.; Haynes, K.J.
Title Interactions between artificial light at night, soil moisture, and plant density affect the growth of a perennial wildflower Type Journal Article
Year 2020 Publication Oecologia Abbreviated Journal Oecologia
Volume in press Issue Pages
Keywords Plants; Community ecology; Light pollution; Milkweed; Precipitation; Sensory pollution
Abstract Artificial light at night (ALAN) has been shown to alter aspects of plant growth, but we are not aware of any studies that have examined whether the effects of ALAN on plants depend upon the backdrop of variation in other abiotic factors that plants encounter in field populations. We conducted a field experiment to investigate whether ALAN affects the growth and anti-herbivore defenses of common milkweed, Asclepias syriaca, and whether the effects of ALAN are influenced by plant density or soil moisture content. Artificial light at night, soil moisture, and plant density were manipulated according to a split-plot factorial design. Although increasing soil moisture by watering had no significant effects on latex exudation, attributes of plant growth generally responded positively to watering. The basal stem diameter (BSD) and height of plants were affected by ALAN x soil moisture interactions. For both of these variables, the positive effects of ALAN were greater for plants that were not watered than for plants that were. Basal stem diameter was also affected by an ALAN x plant density interaction, and the positive effect of ALAN on BSD was greater in the low-density treatment than in the high-density treatment. Our results demonstrate that the effects of ALAN on plant growth can be altered by soil moisture and plant density. Consequently, the effects of ALAN on plants in nature may not be consistent with existing frameworks that do not account for critical abiotic variables such as water availability or biotic interactions between plants such as competition.
Address Blandy Experimental Farm, University of Virginia, 400 Blandy Farm Lane, Boyce, VA, 22620, USA
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes PMID:32533357 Approved no
Call Number GFZ @ kyba @ Serial 3003
Permanent link to this record
 

 
Author Bunning, E.; Moser, I.
Title Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction Type Journal Article
Year 1969 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 62 Issue 4 Pages 1018-1022
Keywords Plants; Moonlight
Abstract Threshold values of photoperiodic time-measurements correspond approximately to moonlight intensities. Experiments with Glycine and Euglena reveal that this is also the threshold value for synchronization of the circadian cycle. Saturation of this reaction is reached with 10 lx in 12:12 hr light-dark cycles. Thus, moonlight might disturb time measurement.In Glycine, Arachis, and Trifolium the intensity of the light coming from the moon to the upper surface of the leaf is reduced by circadian leaf movement to values between 5 and 20 per cent (or even less than 5 per cent) of full-moon light intensity. Such a reduction eliminates the disturbing effects of moonlight. This finding indicates that leaf movements have an adaptive value of the kind that Darwin sought to identify. It also indicates that the behavior of the upper leaf epidermis as a “sense organ for light”(13) has an adaptive value.In the short-day plants Perilla ocymoides and Chenopodium amaranticolor, a specific photoperiodic phenomenon was found that counteracts the disturbing effect of moonlight. Here light intensities similar to those of moonlight, introduced during the night, promote flowering instead of inhibiting it.
Address Institute Of Biology, University Of Tubingen, Germany
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16591742; PMCID:PMC223607 Approved no
Call Number GFZ @ kyba @ Serial 3035
Permanent link to this record
 

 
Author Mayoral, O.; Solbes, J.; Cantó, J.; Pina, T.
Title What Has Been Thought and Taught on the Lunar Influence on Plants in Agriculture? Perspective from Physics and Biology Type Journal Article
Year 2020 Publication Agronomy Abbreviated Journal Agronomy
Volume 10 Issue 7 Pages 955
Keywords Moonlight; Plants
Abstract This paper reviews the beliefs which drive some agricultural sectors to consider the lunar influence as either a stress or a beneficial factor when it comes to organizing their tasks. To address the link between lunar phases and agriculture from a scientific perspective, we conducted a review of textbooks and monographs used to teach agronomy, botany, horticulture and plant physiology; we also consider the physics that address the effects of the Moon on our planet. Finally, we review the scientific literature on plant development, specifically searching for any direct or indirect reference to the influence of the Moon on plant physiology. We found that there is no reliable, science-based evidence for any relationship between lunar phases and plant physiology in any plant–science related textbooks or peer-reviewed journal articles justifying agricultural practices conditioned by the Moon. Nor does evidence from the field of physics support a causal relationship between lunar forces and plant responses. Therefore, popular agricultural practices that are tied to lunar phases have no scientific backing. We strongly encourage teachers involved in plant sciences education to objectively address pseudo-scientific ideas and promote critical thinking.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4395 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3036
Permanent link to this record
 

 
Author Giavi, S.; Blosch, S.; Schuster, G.; Knop, E.
Title Artificial light at night can modify ecosystem functioning beyond the lit area Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 11870
Keywords plants; ecology
Abstract Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought.
Address Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland. eva.knop@ieu.uzh.ch
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32681056; PMCID:PMC7368033 Approved no
Call Number GFZ @ kyba @ Serial 3076
Permanent link to this record
 

 
Author Shimomura, M.; Yoshida, H.; Fujiuchi, N.; Ariizumi, T.; Ezura, H.; Fukuda, N.
Title Continuous blue lighting and elevated carbon dioxide concentration rapidly increase chlorogenic acid content in young lettuce plants Type Journal Article
Year 2020 Publication Scientia Horticulturae Abbreviated Journal Scientia Horticulturae
Volume 272 Issue Pages 109550
Keywords Plants
Abstract Chlorogenic acid (CGA) is a strong antioxidant that potentially reduces oxidative damage in human cells. In this study, the effects of environmental factors such as photoperiod, light quality and intensity, and CO2 concentration on the growth and CGA content of lettuce (Lactuca sativa L.) were evaluated. CGA content in fresh lettuce increased under high light intensity treatments, doubling in concentration under 200 μmol m−2 s-1 compared to 100 μmol m−2 s-1. Elevated CO2 concentration also increased CGA content in fresh lettuce, quadrupling in concentration when grown at 1000 ppm compared to 400 ppm. Furthermore, there was a compound effect of light intensity and CO2 concentration whereby a light intensity level of 200 μmol m−2 s-1 and CO2 of 1000 ppm produced an even higher concentration of CGA, 199 mg per 100 g of fresh lettuce. Increased CGA concentration because of continuous lighting and elevated CO2 was observed under both fluorescent light and blue LED, but not under red LED treatment. Increased day length also induced higher CGA content in lettuce plants. These results show that continuous lighting, including blue spectrum and elevated CO2 concentration can cause higher CGA accumulation in lettuce plants. The observed increase in CGA content was induced only for 2 days after treatment was initiated. One possible interpretation of the data is that physiological stress caused by excess photosynthesis under continuous lighting results in higher CGA content to protect the plant body from high levels of reactive oxidative species. In addition, blue light and CO2 could be stimulus signals for inducing high CGA accumulation via metabolite changes.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4238 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3090
Permanent link to this record