|   | 
Details
   web
Records
Author Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C.
Title Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes Type Journal Article
Year 2018 Publication (up) Physiologia Plantarum Abbreviated Journal Physiol Plant
Volume 164 Issue 2 Pages 226-240
Keywords Plants
Abstract Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn ), maximal photochemical efficiency (Fv /Fm ), electron transport for carbon fixation (JPSII ) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2 O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.
Address School of Animal, Rural and Environmental Science, Brackenhurst Campus, Nottingham Trent University, NG25 0QF, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9317 ISBN Medium
Area Expedition Conference
Notes PMID:29493775 Approved no
Call Number GFZ @ kyba @ Serial 1905
Permanent link to this record
 

 
Author Lumsden, P. J., & Furuya, M.
Title Evidence for Two Actions of Light in the Photoperiodic Induction of Flowering in <italic>Pharbitis nil</italic> Type Journal Article
Year 1986 Publication (up) Plant and Cell Physiology Abbreviated Journal
Volume Issue Pages
Keywords Plants
Abstract Using one-day-old light-grown seedlings of Pharbitis nil we have shown that there are two distinct responses to light during the inductive dark period. The first is the classic night-break, which inhibits flowering at a specific stage of the circadian rhythm (assumed to be the basis of dark time measurement). The second action is to control the phase of this rhythm. The two responses were compared at the 6th and 8th hour of darkness. They differed in their dose responses, and by using very short exposures it was possible to achieve one response without the other. The response of the rhythm to light displayed characteristics of other circadian rhythms; the direction and sensitivity of the phase shift changed between the 6th and 8th h, the rhythm was reset by longer exposures to light, and with one critical light treatment at the appropriate phase, the rhythm was apparently abolished. These results offer direct support for an external coincidence model in the photoperiodic control of floral induction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-9053 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2375
Permanent link to this record
 

 
Author Nelson, J.A.; Bugbee, B.
Title Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures Type Journal Article
Year 2014 Publication (up) PloS one Abbreviated Journal PLoS One
Volume 9 Issue 6 Pages e99010
Keywords Plants
Abstract Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.
Address Crop Physiology Laboratory, Department of Plant Soils and Climate, Utah State University, Logan, Utah, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:24905835; PMCID:PMC4048233 Approved no
Call Number GFZ @ kyba @ Serial 2233
Permanent link to this record
 

 
Author Bunning, E.; Moser, I.
Title Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction Type Journal Article
Year 1969 Publication (up) Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 62 Issue 4 Pages 1018-1022
Keywords Plants; Moonlight
Abstract Threshold values of photoperiodic time-measurements correspond approximately to moonlight intensities. Experiments with Glycine and Euglena reveal that this is also the threshold value for synchronization of the circadian cycle. Saturation of this reaction is reached with 10 lx in 12:12 hr light-dark cycles. Thus, moonlight might disturb time measurement.In Glycine, Arachis, and Trifolium the intensity of the light coming from the moon to the upper surface of the leaf is reduced by circadian leaf movement to values between 5 and 20 per cent (or even less than 5 per cent) of full-moon light intensity. Such a reduction eliminates the disturbing effects of moonlight. This finding indicates that leaf movements have an adaptive value of the kind that Darwin sought to identify. It also indicates that the behavior of the upper leaf epidermis as a “sense organ for light”(13) has an adaptive value.In the short-day plants Perilla ocymoides and Chenopodium amaranticolor, a specific photoperiodic phenomenon was found that counteracts the disturbing effect of moonlight. Here light intensities similar to those of moonlight, introduced during the night, promote flowering instead of inhibiting it.
Address Institute Of Biology, University Of Tubingen, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16591742; PMCID:PMC223607 Approved no
Call Number GFZ @ kyba @ Serial 3035
Permanent link to this record
 

 
Author ffrench-Constant, R.; Somers-Yeates, R.; Bennie, J.; Economou, T.; Hodgson, D.; Spalding, A.; McGregor, P.
Title Light pollution is associated with earlier tree budburst across the United Kingdom Type Journal Article
Year 2016 Publication (up) Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc Roy Soc B Biol Sci
Volume 283 Issue 1833 Pages 1-9
Keywords Plants; light pollution, phenology, species interactions, tree budburst, temperature, urban heat islands; United Kingdom
Abstract The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.
Address Centre for Ecology and Conservation, and 2 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9EZ, UK; rf222(at)exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1472
Permanent link to this record