|   | 
Details
   web
Records
Author Siemens, C.W.
Title III. On the influence of electric light upon vegetation, and on certain physical principles involved Type Journal Article
Year 1880 Publication (up) Proceedings of the Royal Society of London Abbreviated Journal Abstr. Pap. Printed Phil. Trans. R. Soc. Lond.
Volume 30 Issue 200-205 Pages 210-219
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1662 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2376
Permanent link to this record
 

 
Author Singhal, R. K., Kumar, M., & Bose, B.
Title Ecophysiological Responses of Artificial Night Light Pollution in Plants Type Journal Article
Year 2018 Publication (up) Russian Journal of Plant Physiology Abbreviated Journal
Volume Issue Pages
Keywords Plants
Abstract Early in the 20th century, disparate human developmental processes culminate excess artificial light during night time and distort the phenological, physiological and ecological responses, which are sustained in the plants, animals and microorganism from millions of years. Earlier studies regarding artificial light (AL) during the night predominantly covered the drastic effects on animal systems. Although, drastic effects of AL during night time are enormous; therefore, the present topic is focused on the physiological and ecological consequences of artificial night light pollution (ANLP) on plant systems. In these consequences, most of the plant processes under ANLP are affected intensely and cause compelling changes in plant life cycle from germination to maturity. However, severe effects were observed in the case of pollination, photoreceptor signalling, flowering and microhabitats of plants. Along with drastic effects on ecology and environments, its relevance to human developmental processes cannot be avoided. Therefore, we need to equipoise between sustainable environment and steadily human development processes. Further, selection of plant/crop species, which are more responsive to ANLP, can minimize the ecological consequences of night light pollution. Likewise, changing artificial nightscape with the implication of new LEDs (Light Emitting Diodes) lightening policies like UJALA (www.ujala.gov.in), which are low cost, more durable, eco-friendly and less emitter of CO2, have potential to overcome the biodiversity threats, which arise due to old artificial lightening technology from decades. Hence, adopting new advance artificial lightening technology and understanding its impact on plant ecosystem will be a future challenge for plant biologist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2352
Permanent link to this record
 

 
Author Shillo, R., & Halevy, A. H.
Title Interaction of photoperiod and temperature in flowering-control of Gypsophila paniculata L Type Journal Article
Year 1982 Publication (up) Scientia Horticulturae Abbreviated Journal
Volume 16 Issue 4 Pages 385-393
Keywords Plants
Abstract Long day promotes flowering of Gysophila paniculata L cultivar ‘Bristol Fairy’. Repeated treatments with GA3 or GA4 + 7 in short days did not promote flowering. The long photoperiod is effective only at relatively high temperatures. At night temperatures below 12°C, the plants remain vegetative even in long days. Efficient artificial lighting is from incandescent lamps at 60–100 lux. Fluorescent lighting (Cool-White) is not effective. Lighting of 4 hours as a night-break or at the end of the night were equally effective, but 4 hours lighting as a day-extension was less effective. Whole-night lighting promoted flowering more than any of the 4-hour lighting regimes. Cyclic lighting of one third light in each cycle promoted flowering to the same extent as continuous lighting. Light intensity during the day has a decisive effect on flower production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2370
Permanent link to this record
 

 
Author Matsuda, R.; Yamano, T.; Murakami, K.; Fujiwara, K.
Title Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury Type Journal Article
Year 2016 Publication (up) Scientia Horticulturae Abbreviated Journal Scientia Horticulturae
Volume 198 Issue Pages 363-369
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4238 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1387
Permanent link to this record
 

 
Author Kadman-Zahavi, A., & Ephrat, E.
Title The efficiency of different light sources in inducing spray carnation flowering Type Journal Article
Year 1982 Publication (up) Scientia Horticulturae Abbreviated Journal
Volume 18 Issue Pages 159--167
Keywords Plants
Abstract Light from Gro-lux fluorescent lamps, as a 4-h night break, was found to be more effective than incandescent light in promoting spray carnation flowering under natural daylight conditions. When the illuminations were applied for 4 h in the middle of the night, the effectiveness of a certain amount of radiant energy from incandescent light was found to be the same whether applied as intermittent or as continuous illumination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2371
Permanent link to this record