|   | 
Details
   web
Records
Author Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J.
Title Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes Type Journal Article
Year 2018 Publication (up) Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume 59 Issue 4 Pages 529-536
Keywords Plants
Abstract The ice plant (Mesembryanthemum crystallinum L.), widely known to be an effective cure for diabetes mellitus, is also a functional crop. This study was conducted to examine the effects of light quality and intensity of monochromatic light-emitting diodes (LEDs) on ice plant growth and phytochemical concentrations in a closed-type plant production system. Ice plant seedlings were transplanted into a deep floating technique system with a recycling nutrient solution (EC 4.0 dS m−1, pH 6.5). Fluorescent lamps, as well as monochromatic red (660 nm) and blue (450 nm) LEDs, were used at 120 ± 5 or 150 ± 5 µmol m−2 s−1 PPFD with a photoperiod of 14 h/10 h (light/dark) for 4 weeks. Ice plants showed higher growth under the high light intensity treatment, especially under the red LEDs. Furthermore, the SPAD value and photosynthetic rate were higher under the red LEDs with 150 µmol m−2 s−1 PPFD. The ice plant phytochemical composition, such as antioxidant activity and myo-inositol and pinitol concentrations, were highest under the blue LEDs with 150 µmol m−2 s−1 PPFD. Total phenolic concentration was highest under the blue LEDs with 120 µmol m−2 s−1 PPFD. Despite a slightly different dependence on light intensity, phytochemical concentrations responded positively to the blue LED treatments, as compared to other treatments. In conclusion, this study suggests that red LEDs enhance ice plant biomass, while blue LEDs induce phytochemical
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1983
Permanent link to this record
 

 
Author Dzakovich, M.; Gómez, C.; Mitchell, C.
Title Tomatoes Grown with Light-emitting Diodes or High-pressure Sodium Supplemental Lights have Similar Fruit-quality Attributes Type Journal Article
Year 2015 Publication (up) HortScience Abbreviated Journal HortScience
Volume 50 Issue 10 Pages 1498-1502
Keywords Plants; greenhouse tomato production; HPS; LED; physicochemical testing; sensory panels; Solanum lycopersium; tomato; high-pressure sodium; agriculture; horticulture; light-emitting diode
Abstract Light-emitting diodes (LEDs) are an attractive alternative to high-pressure sodium (HPS) lamps for plant growth because of their energy-saving potential. However, the effects of supplementing broad-waveband solar light with narrow-waveband LED light on the sensory attributes of greenhouse-grown tomatoes (Solanum lycopersicum) are largely unknown. Three separate studies investigating the effect of supplemental light quantity and quality on physicochemical and organoleptic properties of greenhouse-grown tomato fruit were conducted over 4- or 5-month intervals during 2012 and 2013. Tomato cultivars Success, Komeett, and Rebelski were grown hydroponically within a high-wire trellising system in a glass-glazed greenhouse. Chromacity, Brix, titratable acidity, electrical conductivity (EC), and pH measurements of fruit extracts indicated plant response differences between lighting treatments. In sensory panels, tasters ranked tomatoes for color, acidity, and sweetness using an objective scale, whereas color, aroma, texture, sweetness, acidity, aftertaste, and overall approval were ranked using hedonic scales. By collecting both physicochemical as well as sensory data, this study was able to determine whether statistically significant physicochemical parameters of tomato fruit also reflected consumer perception of fruit quality. Sensory panels indicated that statistically significant physicochemical differences were not noticeable to tasters and that tasters engaged in blind testing could not discern between tomatoes from different supplemental lighting treatments or unsupplemented controls. Growers interested in reducing supplemental lighting energy consumption by using intracanopy LED (IC-LED) supplemental lighting need not be concerned that the quality of their tomato fruits will be negatively affected by narrow-band supplemental radiation at the intensities and wavelengths used in this study.
Address Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010
Corporate Author Thesis
Publisher American Society for Horticultural Science Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-5345 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1301
Permanent link to this record
 

 
Author Owen, W. G., & Lopez, R. G.
Title Comparison of Sole-source and Supplemental Lighting on Callus Formation and Initial Rhizogenesis of Gaura and Salvia Cuttings Type Journal Article
Year 2019 Publication (up) HortScience Abbreviated Journal
Volume 54 Issue 4 Pages 684-691
Keywords Plants
Abstract Variability in outdoor daily temperatures and photosynthetic daily light integrals (DLIs) from early spring to late fall limits the ability of propagators to accurately control propagation environments to consistently callus, root, and yield compact herbaceous perennial rooted liners. We evaluated and compared the effects of sole-source lighting (SSL) delivered from red (R) and blue (B) light-emitting diodes (LEDs) to supplemental lighting (SL) provided by high-pressure sodium (HPS) lamps on herbaceous perennial cutting morphology, physiology, and growth during callusing and initial rhizogenesis. Cuttings of perennial sage (Salvia nemorosa L. ‘Lyrical Blues’) and wand flower (Gaura lindheimeri Engelm. and A. Gray ‘Siskiyou Pink’) were propagated in a walk-in growth chamber under multilayer SSL provided by LEDs with [R (660 nm)]:[B (460 nm)] light ratios (%) of 100:0 (R100:B0), 75:25 (R75:B25), 50:50 (R50:B50), or 0:100 (R0:B100) delivering 60 µmol·m−2·s–1 for 16 hours (total DLI of 3.4 mol·m−2·d−1). In a glass-glazed greenhouse (GH control), cuttings were propagated under ambient solar light and day-extension SL provided by HPS lamps delivering 40 µmol·m−2·s–1 to provide a 16-hour photoperiod (total DLI of 3.3 mol·m−2·d−1). At 10 days after sticking cuttings, callus diameter and rooting percentage were similar among all light-quality treatments. For instance, callus diameter, a measure of growth, of wand flower cuttings increased from an average 1.7 mm at stick (0 day) to a range of 2.7 to 2.9 mm at 10 days after sticking, regardless of lighting treatment. Relative leaf chlorophyll content was generally greater under SSL R75:B25 or R50:B50 than all other light-quality treatments. However, stem length of perennial sage and wand flower cuttings propagated under SSL R50:B50 at 10 days were 21% and 30% shorter and resulted in 50% and 8% greater root biomass, respectively, compared with those under SL. The herbaceous perennial cuttings propagated in this study under SSL R50:B50 were of similar quality or more compact compared with those under SL, indicating that callus induction and initial rooting can occur under LEDs in a multilayer SSL propagation system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2346
Permanent link to this record
 

 
Author Radetsky L.; Patel J. S.; Rea M. S.
Title Continuous and Intermittent Light at Night, Using Red and Blue LEDs to Suppress Basil Downy Mildew Sporulation Type Journal Article
Year 2020 Publication (up) HortScience Abbreviated Journal
Volume 55 Issue 4 Pages 483-486
Keywords Animals; Plants
Abstract Lighting from red and blue light-emitting diodes (LEDs) is common for crop production in controlled environments. Continuous application of red or blue light at night has been shown to suppress sporulation by Peronospora belbahrii, the causal organism of basil downy mildew (DM), but the suppressing effects of intermittent applications of red and blue LEDs have not been thoroughly researched. This study examined the effects of red (λmax = 670 nm) and blue (λmax = 458 nm) LED top lighting, at two photosynthetic photon flux densities (PPFD = ≈12 and ≈60 µmol·m−2·s−1), using continuous (10-hour) nighttime and two intermittent nighttime exposures, to suppress basil DM sporulation. The two intermittent treatments consisted of one 4-hour exposure and three 1.3-hour exposures spaced 3 hours apart. Continuous nighttime treatments with blue or red LED top lighting at ≈60 µmol·m−2·s−1 were able to suppress basil DM sporulation by more than 99%. At a given nighttime dose of light that did not completely suppress sporulation, continuous lighting was more effective than intermittent lighting, and for these partially suppressing doses, red LEDs were not significantly different from blue LEDs for suppressing sporulation. The present study showed that horticultural lighting systems using red and blue LEDs to grow crops during the day can also be used at night to suppress basil DM sporulation by up to 100%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3143
Permanent link to this record
 

 
Author Maggi, E.; Bertocci, I.; Benedetti-Cecchi, L.
Title Light pollution enhances temporal variability of photosynthetic activity in mature and developing biofilm Type Journal Article
Year 2020 Publication (up) Hydrobiologia Abbreviated Journal Hydrobiologia
Volume 847 Issue 7 Pages 1793-1802
Keywords Plants; Ecology
Abstract Artificial light at night (ALAN) has been recently recognized as a threat for aquatic systems, but a comprehensive knowledge of its effects is still lacking. A fundamental question is whether and how ALAN might affect temporal variability of communities, thus undermining the stability of mature assemblages or influencing the colonization process. Here we investigated the role of ALAN on temporal variability of total biomass and maximum photosynthetic efficiency of marine autotrophic biofilms colonizing Mediterranean high-shore rock surfaces while controlling for density of their main grazers. Results showed stability in total biomass, but an increase in maximum photosynthetic efficiency from unlit to lit conditions, which suggested a temporal change in composition and/or abundance of different taxa within mature assemblages. The effect was weaker during the colonization process; in this case, density of grazers acted in the opposite direction of ALAN. We suggest that the addition of light at times when it would not be naturally present may affect the temporal variability of a variety of functioning in aquatic systems, depending on species-specific sensitivities to ALAN within microbial assemblages and/or indirect effects mediated by their consumers. We highlight to further investigate the role of this emergent topic in aquatic ecology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-8158 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3146
Permanent link to this record