toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Davies, T.W.; Smyth, T. url  doi
openurl 
  Title Why artificial light at night should be a focus for global change research in the 21st century Type Journal Article
  Year 2018 Publication (up) Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume 24 Issue 3 Pages 872-882  
  Keywords Commentary; Animals; Plants  
  Abstract The environmental impacts of artificial light at night have been a rapidly growing field of global change science in recent years. Yet, light pollution has not achieved parity with other global change phenomena in the level of concern and interest it receives from the scientific community, government and nongovernmental organizations. This is despite the globally widespread, expanding and changing nature of night-time lighting and the immediacy, severity and phylogenetic breath of its impacts. In this opinion piece, we evidence 10 reasons why artificial light at night should be a focus for global change research in the 21st century. Our reasons extend beyond those concerned principally with the environment, to also include impacts on human health, culture and biodiversity conservation more generally. We conclude that the growing use of night-time lighting will continue to raise numerous ecological, human health and cultural issues, but that opportunities exist to mitigate its impacts by combining novel technologies with sound scientific evidence. The potential gains from appropriate management extend far beyond those for the environment, indeed it may play a key role in transitioning towards a more sustainable society.  
  Address Plymouth Marine Laboratory, Plymouth, Devon, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29124824 Approved no  
  Call Number GFZ @ kyba @ Serial 2054  
Permanent link to this record
 

 
Author Schroer, S.; Hölker, F. url  doi
isbn  openurl
  Title Impact of Lighting on Flora and Fauna Type Book Chapter
  Year 2016 Publication (up) Handbook of Advanced Lighting Technology Abbreviated Journal  
  Volume Issue Pages 1-33  
  Keywords Ecology; Lighting; Artificial light at night; ALAN; Plants; Animals; review  
  Abstract Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; schroer(at)igb-berlin.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-00295-8 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1470  
Permanent link to this record
 

 
Author Son, K.-H.; Jeon, Y.-M.; Oh, M.-M. url  doi
openurl 
  Title Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting Type Journal Article
  Year 2016 Publication (up) Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.  
  Volume 57 Issue 6 Pages 560-572  
  Keywords Plants  
  Abstract Light-emitting diodes (LEDs) are currently undergoing rapid development as plant growth light sources in a plant factory with artificial lighting (PFAL). However, little is known about the effects of supplementary light and pulsed LEDs on plant growth, bioactive compound productions, and energy efficiency in lettuce. In this study, we aimed to determine the effects of supplementary white LEDs (study I) and pulsed LEDs (study II) on red leaf lettuce (Lactuca sativa L. ‘Sunmang’). In study I, six LED sources were used to determine the effects of supplementary white LEDs (RGB 7:1:1, 7:1:2, RWB 7:1:2, 7:2:1, 8:1:1, 8:2:0 [based on chip number] on lettuce). Fluorescent lamps were used as the control. In study II, pulsed RWB 7:2:1 LED treatments (30, 10, 1 kHz with a 50 or 75% duty ratio) were applied to lettuce. In study I, the application of red and blue fractions improved plant growth characteristics and the accumulation of antioxidant phenolic compounds, respectively. In addition, the application of green light increased plant growth, including the fresh and dry weights of shoots and roots, as well as leaf area. However, the substitution of green LEDs with white LEDs induced approximately 3.4-times higher light and energy use efficiency. In study II, the growth characteristics and photosynthesis of lettuce were affected by various combinations of duty ratio and frequency. In particular, biomass under a 1 kHz 75% duty ratio of pulsed LEDs was not significantly different from that of the control (continuous LEDs). Moreover, no significant difference in leaf photosynthetic rate was observed between any pulsed LED treatment utilizing a 75% duty ratio versus continuous LEDs. However, some pulsed LED treatments may potentially improve light and energy use efficiency compared to continuous LEDs. These results suggest that the fraction of red, blue, and green wavelengths of LEDs is an important factor for plant growth and the biosynthesis of bioactive compounds in lettuce and that supplementary white LEDs (based on a combination of red and blue LEDs) might be more suitable as a commercial lighting source than green LEDs. In addition, the use of suitable pulses of LEDs might save energy while inducing plant growth similar to that under continuous LEDs. Our findings provide important basic information for designing optimal light sources for use in a PFAL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3452 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1615  
Permanent link to this record
 

 
Author Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J. url  doi
openurl 
  Title Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes Type Journal Article
  Year 2018 Publication (up) Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.  
  Volume 59 Issue 4 Pages 529-536  
  Keywords Plants  
  Abstract The ice plant (Mesembryanthemum crystallinum L.), widely known to be an effective cure for diabetes mellitus, is also a functional crop. This study was conducted to examine the effects of light quality and intensity of monochromatic light-emitting diodes (LEDs) on ice plant growth and phytochemical concentrations in a closed-type plant production system. Ice plant seedlings were transplanted into a deep floating technique system with a recycling nutrient solution (EC 4.0 dS m−1, pH 6.5). Fluorescent lamps, as well as monochromatic red (660 nm) and blue (450 nm) LEDs, were used at 120 ± 5 or 150 ± 5 µmol m−2 s−1 PPFD with a photoperiod of 14 h/10 h (light/dark) for 4 weeks. Ice plants showed higher growth under the high light intensity treatment, especially under the red LEDs. Furthermore, the SPAD value and photosynthetic rate were higher under the red LEDs with 150 µmol m−2 s−1 PPFD. The ice plant phytochemical composition, such as antioxidant activity and myo-inositol and pinitol concentrations, were highest under the blue LEDs with 150 µmol m−2 s−1 PPFD. Total phenolic concentration was highest under the blue LEDs with 120 µmol m−2 s−1 PPFD. Despite a slightly different dependence on light intensity, phytochemical concentrations responded positively to the blue LED treatments, as compared to other treatments. In conclusion, this study suggests that red LEDs enhance ice plant biomass, while blue LEDs induce phytochemical  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3452 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1983  
Permanent link to this record
 

 
Author Dzakovich, M.; Gómez, C.; Mitchell, C. url  doi
openurl 
  Title Tomatoes Grown with Light-emitting Diodes or High-pressure Sodium Supplemental Lights have Similar Fruit-quality Attributes Type Journal Article
  Year 2015 Publication (up) HortScience Abbreviated Journal HortScience  
  Volume 50 Issue 10 Pages 1498-1502  
  Keywords Plants; greenhouse tomato production; HPS; LED; physicochemical testing; sensory panels; Solanum lycopersium; tomato; high-pressure sodium; agriculture; horticulture; light-emitting diode  
  Abstract Light-emitting diodes (LEDs) are an attractive alternative to high-pressure sodium (HPS) lamps for plant growth because of their energy-saving potential. However, the effects of supplementing broad-waveband solar light with narrow-waveband LED light on the sensory attributes of greenhouse-grown tomatoes (Solanum lycopersicum) are largely unknown. Three separate studies investigating the effect of supplemental light quantity and quality on physicochemical and organoleptic properties of greenhouse-grown tomato fruit were conducted over 4- or 5-month intervals during 2012 and 2013. Tomato cultivars Success, Komeett, and Rebelski were grown hydroponically within a high-wire trellising system in a glass-glazed greenhouse. Chromacity, Brix, titratable acidity, electrical conductivity (EC), and pH measurements of fruit extracts indicated plant response differences between lighting treatments. In sensory panels, tasters ranked tomatoes for color, acidity, and sweetness using an objective scale, whereas color, aroma, texture, sweetness, acidity, aftertaste, and overall approval were ranked using hedonic scales. By collecting both physicochemical as well as sensory data, this study was able to determine whether statistically significant physicochemical parameters of tomato fruit also reflected consumer perception of fruit quality. Sensory panels indicated that statistically significant physicochemical differences were not noticeable to tasters and that tasters engaged in blind testing could not discern between tomatoes from different supplemental lighting treatments or unsupplemented controls. Growers interested in reducing supplemental lighting energy consumption by using intracanopy LED (IC-LED) supplemental lighting need not be concerned that the quality of their tomato fruits will be negatively affected by narrow-band supplemental radiation at the intensities and wavelengths used in this study.  
  Address Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010  
  Corporate Author Thesis  
  Publisher American Society for Horticultural Science Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-5345 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1301  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: