toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Flowers, N.D.; Gibson, D.J. url  doi
openurl 
  Title Quantified effects of artificial versus natural nighttime lighting on the Eurasian grassesBothriochloa bladhii(Poaceae) andBothriochloa ischaemum(Poaceae) and the North American grassesPanicum virgatum(Poaceae) andSorghastrum nutans(Poaceae) Type Journal Article
  Year 2018 Publication The Journal of the Torrey Botanical Society Abbreviated Journal The Journal of the Torrey Botanical Society  
  Volume 145 Issue 2 Pages 147-155  
  Keywords Plants  
  Abstract Artificial nighttime lighting (light pollution) is increasing worldwide and may have undocumented consequences. In this study, we asked if artificial nighttime lighting affects the performance in monoculture of four grass species: the Eurasian Bothriochloa bladhii (Retz.) S.T. Blake (Poaceae), and Bothriochloa ischaemum (L.) Keng (Poaceae); and the North American Panicum virgatum (L.) (Poaceae), and Sorghastrum nutans (L.) Nash (Poaceae). We conducted a field pot experiment to test for the effects of artificial nighttime lighting and plant density on height, biomass, and leaf number. Height of the tallest individual per population was affected by separate interactions between species and density, light, and time. Final total biomass per individual biomass was increased under nighttime lighting, but more so at low density. Leaf number was increased by artificial nighttime lighting irrespective of species. These results suggest that artificial nighttime lighting may have previously undocumented influences on plant height, biomass, and leaf number within certain species. These findings warrant more in-depth studies into the role that artificial nighttime lighting can have on various plant species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-5674 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 1902  
Permanent link to this record
 

 
Author Grubisic, M.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F. url  doi
openurl 
  Title A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Type Journal Article
  Year 2018 Publication Environmental Pollution Abbreviated Journal Environmental Pollution  
  Volume 240 Issue Pages 630-638  
  Keywords Plants; Ecology  
  Abstract The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 1900  
Permanent link to this record
 

 
Author Grenis, K.; Murphy, S.M. url  doi
openurl 
  Title Direct and indirect effects of light pollution on the performance of an herbivorous insect Type Journal Article
  Year 2018 Publication Insect Science Abbreviated Journal Insect Sci  
  Volume 26 Issue 4 Pages 770-776  
  Keywords Animals; Plants  
  Abstract Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences.  
  Address Department of Biological Sciences, University of Denver, Denver, Colorado, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1672-9609 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29425403 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 1865  
Permanent link to this record
 

 
Author Solano-Lamphar, H.A.; Kocifaj, M. url  doi
openurl 
  Title Numerical research on the effects the skyglow could have in phytochromes and RQE photoreceptors of plants Type Journal Article
  Year 2018 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 209 Issue Pages 484-494  
  Keywords Plants; Skyglow  
  Abstract The increase of artificial light at night has a terrible impact on organisms with nightlife patterns such as a migration, nutrition, reproduction and collective interaction. Plants are not free from this issue as they have life cycle events occurring not only yearly but also daily. Such events relate to daytime variations with seasons in which the flowers of deciduous trees bloom and the leaves of certain trees fall off and change color. A response of plants to artificial light at night still remains poorly quantified; but recent scientific research suggest that skyglow can disturb plants processes. For instance, low levels of light affect deciduous plants, which shed their leaves as days grow short in the fall. In this paper we model skyglow considering the features of artificial light that can affect natural processes of plants during the night. A case-study was conducted to mimic skyglow effects in real location for which experimental data exist. In our numerical simulations we found that some lighting systems can have an effect on plant photoreceptors and affect the phenology of plants. Specifically, the lamps that emit the electromagnetic energy in a wide spectral range can have greater effect on the photosensitivity of the plants. We believe the results obtained here will motivate botanists to make a targeted experiment to verify or challenge our findings. If the night light can change plant behavior under some conditions, it can have significant implications in botany, biology, or even agriculture.  
  Address ICA, Slovak Academy of Sciences, Dubravska Road 9, 845 03, Bratislava, Slovak Republic; Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, 842 48, Bratislava, Slovakia. Electronic address: kocifaj@savba.sk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29316469 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 1854  
Permanent link to this record
 

 
Author Brelsford, CC; Robson, TM url  doi
openurl 
  Title Blue light advances bud burst in branches of three deciduous tree species under short-day conditions Type Journal Article
  Year 2018 Publication Trees Abbreviated Journal  
  Volume 32 Issue 4 Pages 1157-1164  
  Keywords Plants  
  Abstract During spring, utilising multiple cues allow tree species from temperate and boreal regions to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400–500 nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp., the effects of blue light on spring-time bud burst of deciduous tree species have not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in tree species, and that late-successional species would respond more than early-successional species, whose bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400–700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 1847  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: