toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. url  doi
openurl 
  Title (up) Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce ( Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes Type Journal Article
  Year 2018 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany  
  Volume 153 Issue Pages 63-71  
  Keywords Plants  
  Abstract Most leafy vegetables can accumulate large amounts of nitrate, which are often associated with harmful effects on human health. Nitrate assimilation in plants is determined by various growth conditions, especially light conditions including light intensity, light duration and light spectral composition. Red and blue light are the most important since both drive photosynthesis. Increasingly, recent evidence demonstrates a role for green light in the regulation of plant growth and development by regulating the expression of some specific genes. However, the effect of green light on nitrate assimilation has been underestimated. In this study, lettuce (Lactuca sativa L. cv. Butterhead) was treated with continuous light (CL) for 48 h by combined red and blue light-emitting diodes (LEDs) supplemented with or without green LED in an environment-controlled growth chamber. The results showed that nitrate reductase (NR) and nitrite reductase (NiR) related-gene expression and nitrate assimilation enzyme activities were affected by light spectral composition and light duration of CL. Adding green light to red and blue light promoted NR and NiR expressions at 24 h, subsequently, it reduced expression of these genes during CL. Compared with red and blue LEDs, green light supplementation significantly increased NR, NiR, glutamate synthase (GOGAT) and glutamine synthetase (GS) activities. Green-light supplementation under red and blue light was more efficient in promoting nutritional values by maintaining high net photosynthetic rates (Pn) and maximal photochemical efficiency (Fv/Fm).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-8472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1915  
Permanent link to this record
 

 
Author Chen, C. L.; Su, Y. H.; Liu, C.J.; Lee, Y.C. url  openurl
  Title (up) Effect of Night Illumination on Growth and Yield of Soybean Type Journal Article
  Year 2009 Publication Journal of Taiwan Agricultural Research Abbreviated Journal J. of Taiwan Agricultural Res.  
  Volume Issue Pages  
  Keywords Plants; soybeans; Taiwan  
  Abstract To evaluate the potential of soybean as a crop for bio-fuel in Taiwan, field experiments were conducted in 2006 across the island, using an Australian variety ‘Leichardt’. This study was one of the field experiments at Hemei Township, Changhua County. Soybean was seeded by hand-spreading in the fall of 2006 and harvested in 2007. Results showed that seeding of soybean by hand-spreading affected uniformity of seed germination and caused high variations in yield in this field. Seed yield of soybean reached 770 kg ha-1 under good pest management and disease control. The study also showed that night illumination is an important factor affecting growth and yield of soybean. Plants growing near the roadside (within 10–20 m) were exposed to the night light, resulting in prolonged vegetative growth and delayed blossom period for about 1 to 4 weeks. Therefore, such plants suffered from poor pod filling due to low temperature stress at reproduction stage and delayed the harvest period for about 6 weeks. Nevertheless, seed yield of soybean plants exposed to the night illumination reached 1000 kg ha-1, which was slightly higher than soybean plants without exposuring to the night illumination.  
  Address chiling(at)tari.gov.tw  
  Corporate Author Thesis  
  Publisher Taiwan Agricultural Research Institute Place of Publication Editor  
  Language Chinese Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1395  
Permanent link to this record
 

 
Author Wambrauw, D.Z.K.; Kashiwatani, T.; Komura, A.; Hasegawa, H.; Narita, K.; Oku, S.; Yamaguchi, T.; Honda, K.; Maeda, omoo url  doi
openurl 
  Title (up) Effect of Supplemental Light on the Quality of Green Asparagus Spears in Winter ‘Fusekomi’ Forcing Culture Type Journal Article
  Year 2016 Publication Environment Control in Biology Abbreviated Journal Environmental Control in Biology  
  Volume 54 Issue 3 Pages 147-152  
  Keywords Plants  
  Abstract Winter ‘fusekomi’ forcing culture of asparagus is becoming popular in Japan because the method can make production of asparagus possible during cold season. However, there are some problems such as color of the spear is pale, and rutin content is lower compared to spring harvest due to the low light intensity, especially in the production area which has much snow and short sunshine. The objective of this study was to clarify the effect of supplemental lighting on the yield, rutin content, sugar component (fructose, glucose, sucrose), and the color of spears. The experiments were conducted by using different irradiation time and different numbers of fluorescent lamps hanging on the tunnel poles over the cultivation bed on the winter ‘fusekomi’ forcing culture. Compared to the control, rutin content was significantly increased under supplemental lighting plots. No significant difference or negative impact was observed in sugar contents and yield on each plot. Moreover, spear color also appeared to be better under supplemental lighting than that of the control. These results suggested that supplemental lighting was effective to improve the quality of asparagus spears (such as rutin contents, spears color), especially for the production area that has low light intensity or in short day conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1880-554X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1493  
Permanent link to this record
 

 
Author Xu, C.; Wang, H.-J.; Yu, Q.; Wang, H.-Z.; Liang, X.-M.; Liu, M.; Jeppesen, E. url  doi
openurl 
  Title (up) Effects of Artificial LED Light on the Growth of Three Submerged Macrophyte Species during the Low-Growth Winter Season: Implications for Macrophyte Restoration in Small Eutrophic Lakes Type Journal Article
  Year 2019 Publication Water Abbreviated Journal Water  
  Volume 11 Issue 7 Pages 1512  
  Keywords Plants  
  Abstract Eutrophication of lakes is becoming a global environmental problem, leading to, among other things, rapid reproduction of phytoplankton, increased turbidity, loss of submerged macrophytes, and the recovery of these plants following nutrient loading reduction is often delayed. Artificial light supplement could potentially be a useful method to help speeding up recovery. In this study, three common species of submerged macrophytes, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum, were exposed to three LED light treatments (blue, red and white) and shaded (control) for 100 days (from 10 November 2016 to 18 January 2017) in 12 tanks holding 800 L of water. All the three LED light treatments promoted growth of the three macrophyte species in terms of shoot number, length and dry mass. The three light treatments differed in their effects on the growth of the plants; generally, the red light had the strongest promoting effects, followed by blue and white. The differences in light effects may be caused by the different photosynthetic photon flux density (PPFD) of the lights, as indicated by an observed relationship of PPFD with the growth variables. The three species also responded differently to the light treatments, V. natans and C. demersum showing higher growth than M. spicatum. Our findings demonstrate that artificial light supplement in the low-growth winter season can promote growth and recovery of submerged macrophytes and hence potentially enhance their competitiveness against phytoplankton in the following spring. More studies, however, are needed to elucidate if LED light treatment is a potential restoration method in small lakes, when the growth of submerged macrophytes are delayed following a sufficiently large external nutrient loading reduction for a shift to a clear macrophyte state to have a potential to occur. Our results may also be of relevance when elucidating the role of artificial light from cities on the ecosystem functioning of lakes in urban areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2606  
Permanent link to this record
 

 
Author Viera-Perez, M.; Hernandez-Calvento, L.; Hesp, P.A.; Santana-Del Pino, A. url  doi
openurl 
  Title (up) Effects of artificial light on flowering of foredune vegetation Type Journal Article
  Year 2019 Publication Ecology Abbreviated Journal Ecology  
  Volume in press Issue Pages  
  Keywords Plants  
  Abstract The impact of ecological light pollution involves alteration of periods of natural light, a fact that has proven effects on ecosystems. Few studies have focused on the impact of this pollution on wild plant species, and none on coastal dune plants. Many coastal dunes and their plants are adjacent to tourist areas, and these might be affected by light pollution. Such is the case of the Natural Reserve Dunas de Maspalomas (Gran Canaria), where some individuals of the plant species Traganum moquinii, located in the El Ingles beach foredune zone, are affected by light pollution. This study examines the effect of light pollution on the flowering process, and by extension the reproductive cycle of these plants. Plants located closer to high artificial illumination sources receive ~2120 hours per year of intense light more than plants located furthest from those artificial lighting sources. Parts of the plants of Traganum moquinii exposed directly to the artificial light show a significant decrease in the production of flowers, compared to the parts in plants in shade, and to the plants more distant from artificial lights. In consequence, plants exposed more directly to artificial light have a lower potential for seed reproduction. The spectrum of artificial light also affects the plants, and light between 600 and 700 nm primarily affects the reproductive cycle of the Traganum moquinii species. The implications for the ecological and geomorphological functioning of the dune system are discussed, because this species plays a decisive role in the formation of foredune zones and nebkhas in arid dune systems. This article is protected by copyright. All rights reserved.  
  Address Departamento de Matematicas, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30825328 Approved no  
  Call Number GFZ @ kyba @ Serial 2244  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: