Records |
Author |
Rydin, C; Bolinder, K |
Title  |
Moonlight pollination in the gymnosperm Ephedra (Gnetales) |
Type |
Journal Article |
Year |
2015 |
Publication |
Biology Letters |
Abbreviated Journal |
Biol. Lett. |
Volume |
11 |
Issue |
4 |
Pages |
20140993 |
Keywords |
Plants; anemophily; entomophily; lunar phases; nocturnal insects; lunar cycle; light at night; Ephedra; Ephedra distachya; pollination |
Abstract |
Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait. |
Address |
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden |
Corporate Author |
|
Thesis |
|
Publisher |
Royal Society |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
1143 |
Permanent link to this record |
|
|
|
Author |
Kwak, M.; Je, S.; Cheng, H.; Seo, S.; Park, J.; Baek, S.; Khaine, I.; Lee, T.; Jang, J.; Li, Y.; Kim, H.; Lee, J.; Kim, J.; Woo, S. |
Title  |
Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting |
Type |
Journal Article |
Year |
2018 |
Publication |
Forests |
Abbreviated Journal |
Forests |
Volume |
9 |
Issue |
2 |
Pages |
74 |
Keywords |
Plants |
Abstract |
Plants can undergo external fluctuations in the natural light and dark cycle. The photosynthetic apparatus needs to operate in an appropriate manner to fluctuating environmental factors, especially in light. Yellow-poplar seedlings were exposed to nighttime artificial high-pressure sodium (HPS) lighting to evaluate night light-adaptation strategies for photosynthetic apparatus fitness relative to pigment contents, photosystem II photochemistry, photosynthetic parameters, histochemical analysis of reactive oxygen species, and plant biomass. As a result, seedlings exhibited dynamic changes including the enhancement of accessory pigments, the reduction of photosystem II photochemistry, increased stomatal limitation, downregulation of photosynthesis, and the decreased aboveground and belowground biomass under artificial night lighting. Histochemical analysis with 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining indicates the accumulation of in situ superoxide radicals (O2−) and hydrogen peroxide (H2O2) in leaves exposed to the lowest level of artificial night lighting compared to control. Moreover, these leaves exposed to artificial night lighting had a lower nighttime respiration rate. These results indicated that HPS lighting during the night may act as a major factor as repressors of the fitness of photosynthesis and growth patterns, via a modification of the photosynthetic light harvesting apparatus. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1999-4907 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
LoNNe @ kyba @ |
Serial |
1809 |
Permanent link to this record |
|
|
|
Author |
Maksimainen, M.; Vaaja, M.T.; Kurkela, M.; Virtanen, J.-P.; Julin, A.; Jaalama, K.; Hyyppä, H. |
Title  |
Nighttime Mobile Laser Scanning and 3D Luminance Measurement: Verifying the Outcome of Roadside Tree Pruning with Mobile Measurement of the Road Environment |
Type |
Journal Article |
Year |
2020 |
Publication |
ISPRS International Journal of Geo-Information |
Abbreviated Journal |
Ijgi |
Volume |
9 |
Issue |
7 |
Pages |
455 |
Keywords |
Lighting; Plants; Instrumentation |
Abstract |
Roadside vegetation can affect the performance of installed road lighting. We demonstrate a workflow in which a car-mounted measurement system is used to assess the light-obstructing effect of roadside vegetation. The mobile mapping system (MMS) includes a panoramic camera system, laser scanner, inertial measurement unit, and satellite positioning system. The workflow and the measurement system were applied to a road section of Munkkiniemenranta, Helsinki, Finland, in 2015 and 2019. The relative luminance distribution on a road surface and the obstructing vegetation were measured before and after roadside vegetation pruning applying a luminance-calibrated mobile mapping system. The difference between the two measurements is presented, and the opportunities provided by the mobile 3D luminance measurement system are discussed. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2220-9964 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
3092 |
Permanent link to this record |
|
|
|
Author |
Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. |
Title  |
Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer |
Type |
Journal Article |
Year |
2016 |
Publication |
Frontiers in Plant Science |
Abbreviated Journal |
Front Plant Sci |
Volume |
7 |
Issue |
|
Pages |
448 |
Keywords |
Plants; LED; fruit quality; lighting period; photosynthesis; plant factory; single-truss tomato; supplemental lighting; yield |
Abstract |
Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 mumol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter. |
Address |
Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Japan; Department of Biological Sciences, Faculty of Science, The University of Tokyo, Japan |
Corporate Author |
|
Thesis |
|
Publisher |
Frontiers Media S.A. |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1664-462X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:27092163; PMCID:PMC4823311 |
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
1434 |
Permanent link to this record |
|
|
|
Author |
Solano-Lamphar, H.A.; Kocifaj, M. |
Title  |
Numerical research on the effects the skyglow could have in phytochromes and RQE photoreceptors of plants |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Environmental Management |
Abbreviated Journal |
J Environ Manage |
Volume |
209 |
Issue |
|
Pages |
484-494 |
Keywords |
Plants; Skyglow |
Abstract |
The increase of artificial light at night has a terrible impact on organisms with nightlife patterns such as a migration, nutrition, reproduction and collective interaction. Plants are not free from this issue as they have life cycle events occurring not only yearly but also daily. Such events relate to daytime variations with seasons in which the flowers of deciduous trees bloom and the leaves of certain trees fall off and change color. A response of plants to artificial light at night still remains poorly quantified; but recent scientific research suggest that skyglow can disturb plants processes. For instance, low levels of light affect deciduous plants, which shed their leaves as days grow short in the fall. In this paper we model skyglow considering the features of artificial light that can affect natural processes of plants during the night. A case-study was conducted to mimic skyglow effects in real location for which experimental data exist. In our numerical simulations we found that some lighting systems can have an effect on plant photoreceptors and affect the phenology of plants. Specifically, the lamps that emit the electromagnetic energy in a wide spectral range can have greater effect on the photosensitivity of the plants. We believe the results obtained here will motivate botanists to make a targeted experiment to verify or challenge our findings. If the night light can change plant behavior under some conditions, it can have significant implications in botany, biology, or even agriculture. |
Address |
ICA, Slovak Academy of Sciences, Dubravska Road 9, 845 03, Bratislava, Slovak Republic; Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, 842 48, Bratislava, Slovakia. Electronic address: kocifaj@savba.sk |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0301-4797 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:29316469 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
1854 |
Permanent link to this record |