toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Apostol, K.; Dumroese, R.K.; Pinto, J.R.; Davis, A.S. url  doi
openurl 
  Title Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps Type Journal Article
  Year 2015 Publication Canadian Journal of Forest Research Abbreviated Journal Can. J. For. Res.  
  Volume 45 Issue 12 Pages 1711-1719  
  Keywords plants  
  Abstract Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure sodium (HPS) lamps on growth and physiology of Pseudotsuga menziesii (Douglas-fir) and Picea engelmannii (Engelmann spruce) seedlings. We used three latitudinal sources for each species: British Columbia (BC), Idaho (ID), and New Mexico (NM). Container seedlings were grown for 17 weeks in the greenhouse under an 18-h photoperiod of ambient solar light supplemented with light delivered from HPS or LED. In general, seedlings grown under LED had significantly greater growth, gas exchange rates, and chlorophyll contents than those seedlings grown under HPS. The growth and physiological responses to supplemental lighting varied greatly among species and seed sources. Generally, LED-grown seedlings from BC had the greatest growth and tissue dry matter followed by ID and NM populations. Compared with HPS, the significant increase in seedling growth and concomitant energy savings with LED (29% energy consumption relative to HPS) demonstrates the promise of using LED as PAR supplemental lighting for container seedling production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-5067 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1250  
Permanent link to this record
 

 
Author Viera-Perez, M.; Hernandez-Calvento, L.; Hesp, P.A.; Santana-Del Pino, A. url  doi
openurl 
  Title Effects of artificial light on flowering of foredune vegetation Type Journal Article
  Year 2019 Publication Ecology Abbreviated Journal Ecology  
  Volume in press Issue Pages  
  Keywords Plants  
  Abstract The impact of ecological light pollution involves alteration of periods of natural light, a fact that has proven effects on ecosystems. Few studies have focused on the impact of this pollution on wild plant species, and none on coastal dune plants. Many coastal dunes and their plants are adjacent to tourist areas, and these might be affected by light pollution. Such is the case of the Natural Reserve Dunas de Maspalomas (Gran Canaria), where some individuals of the plant species Traganum moquinii, located in the El Ingles beach foredune zone, are affected by light pollution. This study examines the effect of light pollution on the flowering process, and by extension the reproductive cycle of these plants. Plants located closer to high artificial illumination sources receive ~2120 hours per year of intense light more than plants located furthest from those artificial lighting sources. Parts of the plants of Traganum moquinii exposed directly to the artificial light show a significant decrease in the production of flowers, compared to the parts in plants in shade, and to the plants more distant from artificial lights. In consequence, plants exposed more directly to artificial light have a lower potential for seed reproduction. The spectrum of artificial light also affects the plants, and light between 600 and 700 nm primarily affects the reproductive cycle of the Traganum moquinii species. The implications for the ecological and geomorphological functioning of the dune system are discussed, because this species plays a decisive role in the formation of foredune zones and nebkhas in arid dune systems. This article is protected by copyright. All rights reserved.  
  Address Departamento de Matematicas, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30825328 Approved no  
  Call Number GFZ @ kyba @ Serial 2244  
Permanent link to this record
 

 
Author Shor, E.; Potavskaya, R.; Kurtz, A.; Paik, I.; Huq, E.; Green, R. url  doi
openurl 
  Title PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent Type Journal Article
  Year 2018 Publication Genes Abbreviated Journal Genes (Basel)  
  Volume 9 Issue 12 Pages  
  Keywords Plants  
  Abstract Studies are increasingly showing that metabolic and circadian (~24 h) pathways are strongly interconnected, with the circadian system regulating the metabolic state of the cell, and metabolic products feeding back to entrain the oscillator. In plants, probably the most significant impact of the circadian system on metabolism is in its reciprocal regulation of photosynthesis; however, the pathways by which this occurs are still poorly understood. We have previously shown that members of the basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR (PIF) family are involved in the photosynthate entrainment of the circadian oscillator. In this paper, using Arabidopsis mutants and overexpression lines, we examine how temperature and light quality affect PIF-mediated sucrose signaling to the oscillator and examine the contributions of individual PIF members. Our results also show that the quality of light is important for PIF signaling, with red and blue lights having the opposite effects, and that temperature affects PIF-mediated sucrose signaling. We propose the light sensitivity of PIF-mediated sucrose entrainment of the oscillator may be important in enabling plants to distinguish between sucrose produced de novo from photosynthesis during the day and the sucrose products of starch degradation at the end of the night.  
  Address Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem 91904, Israel. rgreen@mail.huji.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4425 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30551669; PMCID:PMC6316277 Approved no  
  Call Number GFZ @ kyba @ Serial 2155  
Permanent link to this record
 

 
Author Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. url  doi
openurl 
  Title LEDs for photons, physiology and food Type Journal Article
  Year 2018 Publication Nature Abbreviated Journal Nature  
  Volume 563 Issue 7732 Pages 493-500  
  Keywords Review; Lighting; Human Health; Plants  
  Abstract Lighting based on light-emitting diodes (LEDs) not only is more energy efficient than traditional lighting, but also enables improved performance and control. The colour, intensity and distribution of light can now be controlled with unprecedented precision, enabling light to be used both as a signal for specific physiological responses in humans and plants, and as an efficient fuel for fresh food production. Here we show how a broad and improved understanding of the physiological responses to light will facilitate greater energy savings and provide health and productivity benefits that have not previously been associated with lighting.  
  Address Utah State University, Logan, UT, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30464269 Approved no  
  Call Number GFZ @ kyba @ Serial 2110  
Permanent link to this record
 

 
Author Correa-Cano, M.E.; Goettsch, B.; Duffy, J.P.; Bennie, J.; Inger, R.; Gaston, K.J. url  doi
openurl 
  Title Erosion of natural darkness in the geographic ranges of cacti Type Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 8 Issue 1 Pages 4347  
  Keywords Plants; Remote Sensing  
  Abstract Naturally dark nighttime environments are being widely eroded by the introduction of artificial light at night (ALAN). The biological impacts vary with the intensity and spectrum of ALAN, but have been documented from molecules to ecosystems. How globally severe these impacts are likely to be depends in large part on the relationship between the spatio-temporal distribution of ALAN and that of the geographic ranges of species. Here, we determine this relationship for the Cactaceae family. Using maps of the geographic ranges of cacti and nighttime stable light composite images for the period 1992 to 2012, we found that a high percentage of cactus species were experiencing ALAN within their ranges in 1992, and that this percentage had increased by 2012. For almost all cactus species (89.7%) the percentage of their geographic range that was lit increased from 1992-1996 to 2008-2012, often markedly. There was a significant negative relationship between the species richness of an area, and that of threatened species, and the level of ALAN. Cacti could be particularly sensitive to this widespread and ongoing intrusion of ALAN into their geographic ranges, especially when considering the potential for additive and synergistic interactions with the impacts of other anthropogenic pressures.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29531261; PMCID:PMC5847551 Approved no  
  Call Number GFZ @ kyba @ Serial 1824  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: