toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Nelson, J.A.; Bugbee, B. url  doi
openurl 
  Title Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures Type Journal Article
  Year 2014 Publication PloS one Abbreviated Journal PLoS One  
  Volume 9 Issue 6 Pages e99010  
  Keywords Plants  
  Abstract Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.  
  Address Crop Physiology Laboratory, Department of Plant Soils and Climate, Utah State University, Logan, Utah, United States of America  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24905835; PMCID:PMC4048233 Approved no  
  Call Number GFZ @ kyba @ Serial 2233  
Permanent link to this record
 

 
Author Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M. url  doi
openurl 
  Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
  Year 2011 Publication Annual Review of Plant Biology Abbreviated Journal Annu Rev Plant Biol  
  Volume 62 Issue Pages 335-364  
  Keywords Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light  
  Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.  
  Address Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-5008 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21526969 Approved no  
  Call Number IDA @ john @ Serial 341  
Permanent link to this record
 

 
Author Caffarra, A.; Donnelly, A. url  doi
openurl 
  Title The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst Type Journal Article
  Year 2011 Publication International Journal of Biometeorology Abbreviated Journal Int J Biometeorol  
  Volume 55 Issue 5 Pages 711-721  
  Keywords Plants  
  Abstract The process of adaptation is the result of stabilising selection caused by two opposite forces: protection against an unfavourable season (survival adaptation), and effective use of growing resources (capacity adaptation). As plant species have evolved different life strategies based on different trade offs between survival and capacity adaptations, different phenological responses are also expected among species. The aim of this study was to compare budburst responses of two opportunistic species (Betula pubescens, and Salix x smithiana) with that of two long-lived, late successional species (Fagus sylvatica and Tilia cordata) and consider their ecological significance. Thus, we performed a series of experiments whereby temperature and photoperiod were manipulated during dormancy. T. cordata and F. sylvatica showed low rates of budburst, high chilling requirements and responsiveness to light intensity, while B. pubescens and S. x smithiana had high rates of budburst, low chilling requirements and were not affected by light intensity. In addition, budburst in B. pubescens and S. x smithiana was more responsive to high forcing temperatures than in T. cordata and F. sylvatica. These results suggest that the timing of growth onset in B. pubescens and S. x smithiana (opportunistic) is regulated through a less conservative mechanism than in T. cordata and F. sylvatica (long-lived, late successional), and that these species trade a higher risk of frost damage for the opportunity of vigorous growth at the beginning of spring, before canopy closure. This information should be considered when assessing the impacts of climate change on vegetation or developing phenological models.  
  Address Department of Botany, School of Natural Sciences, Trinity College Dublin, Ireland. amelia.caffarra@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7128 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21113629 Approved no  
  Call Number LoNNe @ kyba @ Serial 1675  
Permanent link to this record
 

 
Author Raven, J.A.; Cockell, C.S. url  doi
openurl 
  Title Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe) Type Journal Article
  Year 2006 Publication Astrobiology Abbreviated Journal Astrobiology  
  Volume 6 Issue 4 Pages 668-675  
  Keywords Plants  
  Abstract Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.  
  Address Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-8070 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16916290 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1198  
Permanent link to this record
 

 
Author Haag, C.R.; Riek, M.; Hottinger, J.W.; Pajunen, V.I.; Ebert, D. url  doi
openurl 
  Title Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age Type Journal Article
  Year 2005 Publication Genetics Abbreviated Journal Genetics  
  Volume 170 Issue 4 Pages 1809-1820  
  Keywords Plants; Aging; Animals; Daphnia/*genetics/*physiology; *Genetic Variation; *Genetics, Population  
  Abstract If colonization of empty habitat patches causes genetic bottlenecks, freshly founded, young populations should be genetically less diverse than older ones that may have experienced successive rounds of immigration. This can be studied in metapopulations with subpopulations of known age. We studied allozyme variation in metapopulations of two species of water fleas (Daphnia) in the skerry archipelago of southern Finland. These populations have been monitored since 1982. Screening 49 populations of D. longispina and 77 populations of D. magna, separated by distances of 1.5-2180 m, we found that local genetic diversity increased with population age whereas pairwise differentiation among pools decreased with population age. These patterns persisted even after controlling for several potentially confounding ecological variables, indicating that extinction and recolonization dynamics decrease local genetic diversity and increase genetic differentiation in these metapopulations by causing genetic bottlenecks during colonization. We suggest that the effect of these bottlenecks may be twofold, namely decreasing genetic diversity by random sampling and leading to population-wide inbreeding. Subsequent immigration then may not only introduce new genetic material, but also lead to the production of noninbred hybrids, selection for which may cause immigrant alleles to increase in frequency, thus leading to increased genetic diversity in older populations.  
  Address Unite d'Ecologie et d'Evolution, Departement de Biologie, Universite de Fribourg, CH-1700 Fribourg, Switzerland. christoph.haag@ed.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6731 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15937138; PMCID:PMC1449778 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 660  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: