|   | 
Details
   web
Records
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.; Lewis, O.
Title Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations Type Journal Article
Year 2018 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol
Volume (up) 55 Issue 6 Pages 2698-2706
Keywords Ecology; Animals; Plants
Abstract Globally, many ecosystems are exposed to artificial light at night. Nighttime lighting has direct biological impacts on species at all trophic levels. However, the effects of artificial light on biotic interactions remain, for the most part, to be determined.

We exposed experimental mesocosms containing combinations of grassland plants and invertebrate herbivores and predators to illumination at night over a 3‐year period to simulate conditions under different common forms of street lighting.

We demonstrate both top‐down (predation‐controlled) and bottom‐up (resource‐controlled) impacts of artificial light at night in grassland communities. The impacts on invertebrate herbivore abundance were wavelength‐dependent and mediated via other trophic levels.

White LED lighting decreased the abundance of a generalist herbivore mollusc by 55% in the presence of a visual predator, but not in its absence, while monochromatic amber light (with a peak wavelength similar to low‐pressure sodium lighting) decreased abundance of a specialist herbivore aphid (by 17%) by reducing the cover and flower abundance of its main food plant in the system. Artificial white light also significantly increased the food plant's foliar carbon to nitrogen ratio.

We conclude that exposure to artificial light at night can trigger ecological effects spanning trophic levels, and that the nature of such impacts depends on the wavelengths emitted by the lighting technology employed.

Policy implications. Our results confirm that artificial light at night, at illuminance levels similar to roadside vegetation, can have population effects mediated by both top‐down and bottom‐up effects on ecosystems. Given the increasing ubiquity of light pollution at night, these impacts may be widespread in the environment. These results underline the importance of minimizing ecosystem disruption by reducing light pollution in natural and seminatural ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8901 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2086
Permanent link to this record
 

 
Author Son, K.-H.; Jeon, Y.-M.; Oh, M.-M.
Title Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting Type Journal Article
Year 2016 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume (up) 57 Issue 6 Pages 560-572
Keywords Plants
Abstract Light-emitting diodes (LEDs) are currently undergoing rapid development as plant growth light sources in a plant factory with artificial lighting (PFAL). However, little is known about the effects of supplementary light and pulsed LEDs on plant growth, bioactive compound productions, and energy efficiency in lettuce. In this study, we aimed to determine the effects of supplementary white LEDs (study I) and pulsed LEDs (study II) on red leaf lettuce (Lactuca sativa L. ‘Sunmang’). In study I, six LED sources were used to determine the effects of supplementary white LEDs (RGB 7:1:1, 7:1:2, RWB 7:1:2, 7:2:1, 8:1:1, 8:2:0 [based on chip number] on lettuce). Fluorescent lamps were used as the control. In study II, pulsed RWB 7:2:1 LED treatments (30, 10, 1 kHz with a 50 or 75% duty ratio) were applied to lettuce. In study I, the application of red and blue fractions improved plant growth characteristics and the accumulation of antioxidant phenolic compounds, respectively. In addition, the application of green light increased plant growth, including the fresh and dry weights of shoots and roots, as well as leaf area. However, the substitution of green LEDs with white LEDs induced approximately 3.4-times higher light and energy use efficiency. In study II, the growth characteristics and photosynthesis of lettuce were affected by various combinations of duty ratio and frequency. In particular, biomass under a 1 kHz 75% duty ratio of pulsed LEDs was not significantly different from that of the control (continuous LEDs). Moreover, no significant difference in leaf photosynthetic rate was observed between any pulsed LED treatment utilizing a 75% duty ratio versus continuous LEDs. However, some pulsed LED treatments may potentially improve light and energy use efficiency compared to continuous LEDs. These results suggest that the fraction of red, blue, and green wavelengths of LEDs is an important factor for plant growth and the biosynthesis of bioactive compounds in lettuce and that supplementary white LEDs (based on a combination of red and blue LEDs) might be more suitable as a commercial lighting source than green LEDs. In addition, the use of suitable pulses of LEDs might save energy while inducing plant growth similar to that under continuous LEDs. Our findings provide important basic information for designing optimal light sources for use in a PFAL.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1615
Permanent link to this record
 

 
Author Joo, Y.; Fragoso, V.; Yon, F.; Baldwin, I.T.; Kim, S.-G.
Title The circadian clock component, LHY, tells a plant when to respond photosynthetically to light in nature Type Journal Article
Year 2017 Publication Journal of Integrative Plant Biology Abbreviated Journal J Integr Plant Biol
Volume (up) 59 Issue 8 Pages 572-587
Keywords plants
Abstract The circadian clock is known to increase plant growth and fitness, and thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, Nicotiana attenuata to silence two core clock components, NaLHY (irLHY) and NaTOC1 (irTOC1). We characterized growth and light-and dark-adapted photosynthetic rates (Ac ) throughout a 24 h day in empty vector-transformed (EV), irLHY, and irTOC1 plants in the field, and in NaPhyA-and NaPhyB1-silenced plants in the glasshouse. The growth rates of irLHY plants were lower than those of EV plants in the field. While irLHY plants reduced Ac earlier at dusk, no differences between irLHY and EV plants were observed at dawn in the field. irLHY, but not EV plants, responded to light in the night by rapidly increasing Ac . Under controlled conditions, EV plants rapidly increased Ac in the day compared to dark-adapted plants at night; irLHY plants lost these time-dependent responses. The role of NaLHY in gating photosynthesis is independent of the light-dependent reactions and red light perceived by NaPhyA, but not NaPhyB1. In summary, the circadian clock allows plants not to respond photosynthetically to light at night by anticipating and gating red light-mediated in native tobacco.
Address Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Str. 8, D-07745, Jena, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1672-9072 ISBN Medium
Area Expedition Conference
Notes PMID:28429400 Approved no
Call Number LoNNe @ kyba @ Serial 1657
Permanent link to this record
 

 
Author Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J.
Title Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes Type Journal Article
Year 2018 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume (up) 59 Issue 4 Pages 529-536
Keywords Plants
Abstract The ice plant (Mesembryanthemum crystallinum L.), widely known to be an effective cure for diabetes mellitus, is also a functional crop. This study was conducted to examine the effects of light quality and intensity of monochromatic light-emitting diodes (LEDs) on ice plant growth and phytochemical concentrations in a closed-type plant production system. Ice plant seedlings were transplanted into a deep floating technique system with a recycling nutrient solution (EC 4.0 dS m−1, pH 6.5). Fluorescent lamps, as well as monochromatic red (660 nm) and blue (450 nm) LEDs, were used at 120 ± 5 or 150 ± 5 µmol m−2 s−1 PPFD with a photoperiod of 14 h/10 h (light/dark) for 4 weeks. Ice plants showed higher growth under the high light intensity treatment, especially under the red LEDs. Furthermore, the SPAD value and photosynthetic rate were higher under the red LEDs with 150 µmol m−2 s−1 PPFD. The ice plant phytochemical composition, such as antioxidant activity and myo-inositol and pinitol concentrations, were highest under the blue LEDs with 150 µmol m−2 s−1 PPFD. Total phenolic concentration was highest under the blue LEDs with 120 µmol m−2 s−1 PPFD. Despite a slightly different dependence on light intensity, phytochemical concentrations responded positively to the blue LED treatments, as compared to other treatments. In conclusion, this study suggests that red LEDs enhance ice plant biomass, while blue LEDs induce phytochemical
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1983
Permanent link to this record
 

 
Author Eng, R.Y.N.; Tsujita, M.J.; Grodzinski, B.
Title The effects of supplementary HPS lighting and carbon dioxide enrichment on the vegetative growth, nutritional status and flowering characteristics ofChrysanthemum morifoliumRamat Type Journal Article
Year 1985 Publication Journal of Horticultural Science Abbreviated Journal Journal of Horticultural Science
Volume (up) 60 Issue 3 Pages 389-395
Keywords Plants
Abstract Supplementary high pressure sodium (HPS) lighting (140 µmol m−2s−1) and CO2 enrichment (1375 µl l−1) improved the vegetative growth of Chrysanthemum morifolium cv Dramatic by increases in stem length, stem diameter, root weight ratio, dry weight, relative growth and net assimilation rates. Three-week-old chrysanthemums grown under CO2 enrichment and HPS lighting had lower leaf weight and stem weight ratios as well as lower foliar nutrient content than those grown under ambient CO2 and natural light. Plants grown on to maturity under CO2 enrichment and supplementary HPS lighting had the longest stem lengths, the most flowers and greatest increase in dry weight. The combination of both additional light and CO2 was superior to either factor used alone. With 24 h HPS supplementary lighting CO2 enrichment was most effective in improving vegetative growth and flower quality when applied during the daytime. Night CO2 enrichment was not commercially beneficial at the light levels employed in this study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1589 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2373
Permanent link to this record