|   | 
Details
   web
Records
Author Wambrauw, D.Z.K.; Kashiwatani, T.; Komura, A.; Hasegawa, H.; Narita, K.; Oku, S.; Yamaguchi, T.; Honda, K.; Maeda, omoo
Title Effect of Supplemental Light on the Quality of Green Asparagus Spears in Winter ‘Fusekomi’ Forcing Culture Type Journal Article
Year 2016 Publication Environment Control in Biology Abbreviated Journal Environmental Control in Biology
Volume (up) 54 Issue 3 Pages 147-152
Keywords Plants
Abstract Winter ‘fusekomi’ forcing culture of asparagus is becoming popular in Japan because the method can make production of asparagus possible during cold season. However, there are some problems such as color of the spear is pale, and rutin content is lower compared to spring harvest due to the low light intensity, especially in the production area which has much snow and short sunshine. The objective of this study was to clarify the effect of supplemental lighting on the yield, rutin content, sugar component (fructose, glucose, sucrose), and the color of spears. The experiments were conducted by using different irradiation time and different numbers of fluorescent lamps hanging on the tunnel poles over the cultivation bed on the winter ‘fusekomi’ forcing culture. Compared to the control, rutin content was significantly increased under supplemental lighting plots. No significant difference or negative impact was observed in sugar contents and yield on each plot. Moreover, spear color also appeared to be better under supplemental lighting than that of the control. These results suggested that supplemental lighting was effective to improve the quality of asparagus spears (such as rutin contents, spears color), especially for the production area that has low light intensity or in short day conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1880-554X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1493
Permanent link to this record
 

 
Author Owen, W. G., & Lopez, R. G.
Title Comparison of Sole-source and Supplemental Lighting on Callus Formation and Initial Rhizogenesis of Gaura and Salvia Cuttings Type Journal Article
Year 2019 Publication HortScience Abbreviated Journal
Volume (up) 54 Issue 4 Pages 684-691
Keywords Plants
Abstract Variability in outdoor daily temperatures and photosynthetic daily light integrals (DLIs) from early spring to late fall limits the ability of propagators to accurately control propagation environments to consistently callus, root, and yield compact herbaceous perennial rooted liners. We evaluated and compared the effects of sole-source lighting (SSL) delivered from red (R) and blue (B) light-emitting diodes (LEDs) to supplemental lighting (SL) provided by high-pressure sodium (HPS) lamps on herbaceous perennial cutting morphology, physiology, and growth during callusing and initial rhizogenesis. Cuttings of perennial sage (Salvia nemorosa L. ‘Lyrical Blues’) and wand flower (Gaura lindheimeri Engelm. and A. Gray ‘Siskiyou Pink’) were propagated in a walk-in growth chamber under multilayer SSL provided by LEDs with [R (660 nm)]:[B (460 nm)] light ratios (%) of 100:0 (R100:B0), 75:25 (R75:B25), 50:50 (R50:B50), or 0:100 (R0:B100) delivering 60 µmol·m−2·s–1 for 16 hours (total DLI of 3.4 mol·m−2·d−1). In a glass-glazed greenhouse (GH control), cuttings were propagated under ambient solar light and day-extension SL provided by HPS lamps delivering 40 µmol·m−2·s–1 to provide a 16-hour photoperiod (total DLI of 3.3 mol·m−2·d−1). At 10 days after sticking cuttings, callus diameter and rooting percentage were similar among all light-quality treatments. For instance, callus diameter, a measure of growth, of wand flower cuttings increased from an average 1.7 mm at stick (0 day) to a range of 2.7 to 2.9 mm at 10 days after sticking, regardless of lighting treatment. Relative leaf chlorophyll content was generally greater under SSL R75:B25 or R50:B50 than all other light-quality treatments. However, stem length of perennial sage and wand flower cuttings propagated under SSL R50:B50 at 10 days were 21% and 30% shorter and resulted in 50% and 8% greater root biomass, respectively, compared with those under SL. The herbaceous perennial cuttings propagated in this study under SSL R50:B50 were of similar quality or more compact compared with those under SL, indicating that callus induction and initial rooting can occur under LEDs in a multilayer SSL propagation system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2346
Permanent link to this record
 

 
Author Caffarra, A.; Donnelly, A.
Title The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst Type Journal Article
Year 2011 Publication International Journal of Biometeorology Abbreviated Journal Int J Biometeorol
Volume (up) 55 Issue 5 Pages 711-721
Keywords Plants
Abstract The process of adaptation is the result of stabilising selection caused by two opposite forces: protection against an unfavourable season (survival adaptation), and effective use of growing resources (capacity adaptation). As plant species have evolved different life strategies based on different trade offs between survival and capacity adaptations, different phenological responses are also expected among species. The aim of this study was to compare budburst responses of two opportunistic species (Betula pubescens, and Salix x smithiana) with that of two long-lived, late successional species (Fagus sylvatica and Tilia cordata) and consider their ecological significance. Thus, we performed a series of experiments whereby temperature and photoperiod were manipulated during dormancy. T. cordata and F. sylvatica showed low rates of budburst, high chilling requirements and responsiveness to light intensity, while B. pubescens and S. x smithiana had high rates of budburst, low chilling requirements and were not affected by light intensity. In addition, budburst in B. pubescens and S. x smithiana was more responsive to high forcing temperatures than in T. cordata and F. sylvatica. These results suggest that the timing of growth onset in B. pubescens and S. x smithiana (opportunistic) is regulated through a less conservative mechanism than in T. cordata and F. sylvatica (long-lived, late successional), and that these species trade a higher risk of frost damage for the opportunity of vigorous growth at the beginning of spring, before canopy closure. This information should be considered when assessing the impacts of climate change on vegetation or developing phenological models.
Address Department of Botany, School of Natural Sciences, Trinity College Dublin, Ireland. amelia.caffarra@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7128 ISBN Medium
Area Expedition Conference
Notes PMID:21113629 Approved no
Call Number LoNNe @ kyba @ Serial 1675
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.; Lewis, O.
Title Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations Type Journal Article
Year 2018 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol
Volume (up) 55 Issue 6 Pages 2698-2706
Keywords Ecology; Animals; Plants
Abstract Globally, many ecosystems are exposed to artificial light at night. Nighttime lighting has direct biological impacts on species at all trophic levels. However, the effects of artificial light on biotic interactions remain, for the most part, to be determined.

We exposed experimental mesocosms containing combinations of grassland plants and invertebrate herbivores and predators to illumination at night over a 3‐year period to simulate conditions under different common forms of street lighting.

We demonstrate both top‐down (predation‐controlled) and bottom‐up (resource‐controlled) impacts of artificial light at night in grassland communities. The impacts on invertebrate herbivore abundance were wavelength‐dependent and mediated via other trophic levels.

White LED lighting decreased the abundance of a generalist herbivore mollusc by 55% in the presence of a visual predator, but not in its absence, while monochromatic amber light (with a peak wavelength similar to low‐pressure sodium lighting) decreased abundance of a specialist herbivore aphid (by 17%) by reducing the cover and flower abundance of its main food plant in the system. Artificial white light also significantly increased the food plant's foliar carbon to nitrogen ratio.

We conclude that exposure to artificial light at night can trigger ecological effects spanning trophic levels, and that the nature of such impacts depends on the wavelengths emitted by the lighting technology employed.

Policy implications. Our results confirm that artificial light at night, at illuminance levels similar to roadside vegetation, can have population effects mediated by both top‐down and bottom‐up effects on ecosystems. Given the increasing ubiquity of light pollution at night, these impacts may be widespread in the environment. These results underline the importance of minimizing ecosystem disruption by reducing light pollution in natural and seminatural ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8901 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2086
Permanent link to this record
 

 
Author Radetsky L.; Patel J. S.; Rea M. S.
Title Continuous and Intermittent Light at Night, Using Red and Blue LEDs to Suppress Basil Downy Mildew Sporulation Type Journal Article
Year 2020 Publication HortScience Abbreviated Journal
Volume (up) 55 Issue 4 Pages 483-486
Keywords Animals; Plants
Abstract Lighting from red and blue light-emitting diodes (LEDs) is common for crop production in controlled environments. Continuous application of red or blue light at night has been shown to suppress sporulation by Peronospora belbahrii, the causal organism of basil downy mildew (DM), but the suppressing effects of intermittent applications of red and blue LEDs have not been thoroughly researched. This study examined the effects of red (λmax = 670 nm) and blue (λmax = 458 nm) LED top lighting, at two photosynthetic photon flux densities (PPFD = ≈12 and ≈60 µmol·m−2·s−1), using continuous (10-hour) nighttime and two intermittent nighttime exposures, to suppress basil DM sporulation. The two intermittent treatments consisted of one 4-hour exposure and three 1.3-hour exposures spaced 3 hours apart. Continuous nighttime treatments with blue or red LED top lighting at ≈60 µmol·m−2·s−1 were able to suppress basil DM sporulation by more than 99%. At a given nighttime dose of light that did not completely suppress sporulation, continuous lighting was more effective than intermittent lighting, and for these partially suppressing doses, red LEDs were not significantly different from blue LEDs for suppressing sporulation. The present study showed that horticultural lighting systems using red and blue LEDs to grow crops during the day can also be used at night to suppress basil DM sporulation by up to 100%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3143
Permanent link to this record