toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pocock, T. url  doi
openurl 
  Title Advanced lighting technology in controlled environment agriculture Type Journal Article
  Year (down) 2016 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 48 Issue 1 Pages 83-94  
  Keywords Plants; Lighting  
  Abstract There is a recent awareness of the importance of plants in our everyday lives. Light is a requirement for plants and serves two important roles. It provides energy for growth and provides information that elicits plant responses including, among others, plant shape, pigmentation, nutritional content and resistance to stress. Light is paradoxical to plants, it is a requirement however, in excess it is damaging. Plants sense and interpret light through many families of photoreceptors and through the energy state of the photosynthetic apparatus. Light emitting diodes (LEDs) are quickly replacing traditional light sources for human applications, and currently there is effort being put into tailoring these technology platforms for the plant community. Potential plant sensing pathways and the spectral effects on pigmentation and photochemistry in red lettuce are described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1383  
Permanent link to this record
 

 
Author Matsuda, R.; Yamano, T.; Murakami, K.; Fujiwara, K. url  doi
openurl 
  Title Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury Type Journal Article
  Year (down) 2016 Publication Scientia Horticulturae Abbreviated Journal Scientia Horticulturae  
  Volume 198 Issue Pages 363-369  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4238 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1387  
Permanent link to this record
 

 
Author Ben-Attia, M.; Reinberg, A.; Smolensky, M.H.; Gadacha, W.; Khedaier, A.; Sani, M.; Touitou, Y.; Boughamni, N.G. url  doi
openurl 
  Title Blooming rhythms of cactus Cereus peruvianus with nocturnal peak at full moon during seasons of prolonged daytime photoperiod Type Journal Article
  Year (down) 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 33 Issue 4 Pages 419-430  
  Keywords Plants; Moonlight  
  Abstract Cereus peruvianus (Peruvian apple cactus) is a large erect and thorny succulent cactus characterized by column-like (cereus [L]: column), that is, candle-shaped, appendages. For three successive years (1100 days), between early April and late November, we studied the flowering patterns of eight cacti growing in public gardens and rural areas of north and central Tunisia, far from nighttime artificial illumination, in relation to natural environmental light, temperature, relative humidity and precipitation parameters. Flower blooming was assessed nightly between 23:00 h and until at least 02:00 h, and additionally around-the-clock at ~1 h intervals for 30 consecutive days during the late summer of each year of study to quantify both nyctohemeral (day-night) and lunar patterns. During the summer months of prolonged daytime photoperiod, flower blooming of C. peruvianus exhibited predictable-in-time variation as “waves” with average period of 29.5 days synchronized by the light of the full moon. The large-sized flower (~16 cm diameter) opens almost exclusively at night, between sunset and sunrise, as a 24 h rhythm during a specific 3-4-day span of the lunar cycle (full moon), with a strong correlation between moon phase and number and proportion of flowers in bloom (ranging from r = +0.59 to +0.91). Black, blue and red cotton sheets were used to filter specific spectral bands of nighttime moonlight from illuminating randomly selected plant appendages as a means to test the hypothesis of a “gating” 24 h rhythm phenomenon of photoreceptors at the bud level. Relative to control conditions (no light filtering), black sheet covering inhibited flower bud induction by 87.5%, red sheet covering by 46.6% and blue sheet covering by 34%, and the respective inhibiting effects on number of flowers in bloom were essentially 100%, ~81% and ~44%. C. peruvianus is a unique example of a terrestrial plant that exhibits a circadian flowering rhythm (peak ~00:00 h) “gated” by 24 h, lunar 29.5-day (bright light of full moon) and annual 365.25-day (prolonged summertime day length) environmental photoperiod cycles.  
  Address e Departement des Sciences de la Vie, Faculte des Sciences de Bizerte , Universite de Carthage , Zarzouna , Tunisie  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27030087 Approved no  
  Call Number LoNNe @ kyba @ Serial 1411  
Permanent link to this record
 

 
Author Gómez, C.; Mitchell, C.A. url  openurl
  Title Physiological and Productivity Responses of High-wire Tomato as Affected by Supplemental Light Source and Distribution within the Canopy Type Journal Article
  Year (down) 2016 Publication Journal of the American Society for Horticultural Science Abbreviated Journal J. Amer. Soc. Hort. Sci.  
  Volume 141 Issue 2 Pages 196-208  
  Keywords Plants; tomato; LED; LED lighting; Solanum lycopersicum; intracanopy lighting; greenhouses; intracanopy supplemental lighting; daily light integral  
  Abstract The relative coolness-to-touch of light-emitting diodes (LEDs) has enabled commercial implementation of intracanopy lighting (ICL) in the greenhouse. Intracanopy lighting, which refers to the strategy of lighting along the side or from within the foliar canopy, can increase canopy photosynthetic activity, but physiological and productivity responses of high-wire greenhouse tomato (Solanum lycopersicum) to intracanopy supplemental lighting (SL) still are not yet fully understood. Two consecutive production experiments were conducted across seasons in a glass-glazed greenhouse located in a midnorthern, continental climate [lat. 40°N (West Lafayette, IN)]. Plants were grown from winter-to-summer [increasing solar daily light integral (DLI)] and from summer-to-winter (decreasing solar DLI) to compare three SL strategies for high-wire tomato production across changing solar DLIs: top lighting with high-pressure sodium lamps (HPS) vs. intracanopy LED vertical towers vs. hybrid SL (HPS + horizontal ICL-LEDs). A control treatment also was included for which no SL was provided. Supplemental DLI for each experimental period was adjusted monthly, to complement seasonal changes in sunlight, aiming to approach a target total DLI of 25 mol·m‒2·d‒1 during fruit set. Harvest parameters (total fruit fresh weight, number of fruit harvested, and average cluster fresh weight), tissue temperature, chlorophyll fluorescence, and stomatal conductance (gS) were unaffected by SL treatment in both experiments. Among the physiological parameters evaluated, CO2 assimilation measured under light-saturating conditions, light-limited quantum-use efficiency, and maximum gross CO2 assimilation (Amax) proved to be good indicators of how ICL reduces the top-to-bottom decline in leaf photosynthetic activity otherwise measured with top lighting only (HPS-SL or solar). Although SL generally increased fruit yield relative to control, lack of SL treatment differences among harvest parameters indicates that higher crop photosynthetic activity did not increase fruit yield. Compared with control, intracanopy SL increased yield to the same extent as top SL, but the remaining photoassimilate from ICL most likely was partitioned to maintain nonharvested, vegetative plant parts as well.  
  Address Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010  
  Corporate Author Thesis  
  Publisher American Society for Horticultural Science Place of Publication Editor  
  Language Engligh Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-1062 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1431  
Permanent link to this record
 

 
Author Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. url  doi
openurl 
  Title Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer Type Journal Article
  Year (down) 2016 Publication Frontiers in Plant Science Abbreviated Journal Front Plant Sci  
  Volume 7 Issue Pages 448  
  Keywords Plants; LED; fruit quality; lighting period; photosynthesis; plant factory; single-truss tomato; supplemental lighting; yield  
  Abstract Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 mumol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.  
  Address Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Japan; Department of Biological Sciences, Faculty of Science, The University of Tokyo, Japan  
  Corporate Author Thesis  
  Publisher Frontiers Media S.A. Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-462X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27092163; PMCID:PMC4823311 Approved no  
  Call Number IDA @ john @ Serial 1434  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: