toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lang, M.; Lichtenthaler, H.K.; Sowinska, M.; Heisel, F.; Miehé, J.A. url  doi
openurl 
  Title Fluorescence Imaging of Water and Temperature Stress in Plant Leaves Type Journal Article
  Year (down) 1996 Publication Journal of Plant Physiology Abbreviated Journal Journal of Plant Physiology  
  Volume 148 Issue 5 Pages 613-621  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0176-1617 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 656  
Permanent link to this record
 

 
Author Krause, G.H.; Weis, E. url  doi
openurl 
  Title Chlorophyll Fluorescence and Photosynthesis: The Basics Type Journal Article
  Year (down) 1991 Publication Annual Review of Plant Physiology and Plant Molecular Biology Abbreviated Journal Annu. Rev. Plant. Physiol. Plant. Mol. Biol.  
  Volume 42 Issue 1 Pages 313-349  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-2519 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 654  
Permanent link to this record
 

 
Author Lumsden, P. J., & Furuya, M. url  doi
openurl 
  Title Evidence for Two Actions of Light in the Photoperiodic Induction of Flowering in <italic>Pharbitis nil</italic> Type Journal Article
  Year (down) 1986 Publication Plant and Cell Physiology Abbreviated Journal  
  Volume Issue Pages  
  Keywords Plants  
  Abstract Using one-day-old light-grown seedlings of Pharbitis nil we have shown that there are two distinct responses to light during the inductive dark period. The first is the classic night-break, which inhibits flowering at a specific stage of the circadian rhythm (assumed to be the basis of dark time measurement). The second action is to control the phase of this rhythm. The two responses were compared at the 6th and 8th hour of darkness. They differed in their dose responses, and by using very short exposures it was possible to achieve one response without the other. The response of the rhythm to light displayed characteristics of other circadian rhythms; the direction and sensitivity of the phase shift changed between the 6th and 8th h, the rhythm was reset by longer exposures to light, and with one critical light treatment at the appropriate phase, the rhythm was apparently abolished. These results offer direct support for an external coincidence model in the photoperiodic control of floral induction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-9053 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2375  
Permanent link to this record
 

 
Author Taylor, G.; Davies, W.J. url  doi
openurl 
  Title The Control Of Leaf Growth Of Betula And Acer By Photoenvironment Type Journal Article
  Year (down) 1985 Publication New Phytologist Abbreviated Journal New Phytol  
  Volume 101 Issue 2 Pages 259-268  
  Keywords Plants  
  Abstract Leaf extension of one‐year‐old seedlings of silver birch (Betula pendula Roth.) and sycamore (Acer pseudoplatanus L.), was measured using linear variable transducers (LVDTs) interfaced to a microcomputer. Birch and sycamore seedlings exhibited contrasting patterns of leaf extension during a diurnal cycle with a 16 h photoperiod. Birch leaves grew more rapidly when illuminated; growth during the photoperiod was approximately doubled when compared with growth in the dark. Mean relative growth rates ±SE at ‘lights‐on + 3 h’ and ‘lights‐off + 5 h’ were 0.0136 ± 0.0016 and 0.0066 ± 0.0005 h−1 respectively. In direct contrast, growth of sycamore leaves was increased when leaves were darkened; mean relative growth rates + SE at ‘lights‐on+3 h’ and ‘lights‐off + 5 h’ were 0.0056 ± 0.0005 and 0.0094 ± 0.0008 h‐1 respectively.

When leaves of birch and sycamore were darkened, increased leaf turgor was measured in both species, but only in sycamore was this higher night‐time turgor associated with a higher rate of leaf growth.

Cell wall extensibility (WEX), an indication of the ability of cell walls to loosen and extend irreversibly, and cell surface pH were assessed in darkened and illuminated leaves of both species. An increase in WEX was measured when birch leaves were illuminated (P≤ 0.001) and this was accompanied by a decline in cell surface pH (P≤ 0.001). However, when leaves of sycamore were illuminated, WEX declined (P≤ 005) and cell surface pH increased (P≤ 0.001).

The ability of these species to survive beneath a woodland canopy is discussed in relation to the cellular factors controlling their leaf growth.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1992  
Permanent link to this record
 

 
Author Eng, R.Y.N.; Tsujita, M.J.; Grodzinski, B. url  doi
openurl 
  Title The effects of supplementary HPS lighting and carbon dioxide enrichment on the vegetative growth, nutritional status and flowering characteristics ofChrysanthemum morifoliumRamat Type Journal Article
  Year (down) 1985 Publication Journal of Horticultural Science Abbreviated Journal Journal of Horticultural Science  
  Volume 60 Issue 3 Pages 389-395  
  Keywords Plants  
  Abstract Supplementary high pressure sodium (HPS) lighting (140 µmol m−2s−1) and CO2 enrichment (1375 µl l−1) improved the vegetative growth of Chrysanthemum morifolium cv Dramatic by increases in stem length, stem diameter, root weight ratio, dry weight, relative growth and net assimilation rates. Three-week-old chrysanthemums grown under CO2 enrichment and HPS lighting had lower leaf weight and stem weight ratios as well as lower foliar nutrient content than those grown under ambient CO2 and natural light. Plants grown on to maturity under CO2 enrichment and supplementary HPS lighting had the longest stem lengths, the most flowers and greatest increase in dry weight. The combination of both additional light and CO2 was superior to either factor used alone. With 24 h HPS supplementary lighting CO2 enrichment was most effective in improving vegetative growth and flower quality when applied during the daytime. Night CO2 enrichment was not commercially beneficial at the light levels employed in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1589 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2373  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: