|   | 
Author Bharti, N.; Tatem, A.J.; Ferrari, M.J.; Grais, R.F.; Djibo, A.; Grenfell, B.T.
Title Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery Type Journal Article
Year 2011 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 334 Issue 6061 Pages 1424-1427
Keywords Remote Sensing; Human Health; Cities; Emigration and Immigration; Epidemics; *Epidemiologic Methods; Humans; Light; Measles/*epidemiology/transmission; Niger/epidemiology; *Population Density; Remote Sensing Technology; *Seasons; Spacecraft
Abstract Measles epidemics in West Africa cause a significant proportion of vaccine-preventable childhood mortality. Epidemics are strongly seasonal, but the drivers of these fluctuations are poorly understood, which limits the predictability of outbreaks and the dynamic response to immunization. We show that measles seasonality can be explained by spatiotemporal changes in population density, which we measure by quantifying anthropogenic light from satellite imagery. We find that measles transmission and population density are highly correlated for three cities in Niger. With dynamic epidemic models, we demonstrate that measures of population density are essential for predicting epidemic progression at the city level and improving intervention strategies. In addition to epidemiological applications, the ability to measure fine-scale changes in population density has implications for public health, crisis management, and economic development.
Address Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. nbharti@princeton.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:22158822; PMCID:PMC3891598 Approved no
Call Number GFZ @ kyba @ Serial 2770
Permanent link to this record