|   | 
Details
   web
Records
Author Zheng, Q.; Jiang, R.; Wang, K.; Huang, L.; Ye, Z.; Gan, M.; Ji, B.
Title Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model Type Journal Article
Year 2018 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation
Volume 65 Issue Pages 24-34
Keywords Remote Sensing
Abstract (down) Urban nighttime light hotspot is an ideal representation of the spatial heterogeneity of human activities within a city, which is sensitive to regional urban expansion pattern. However, most of previous studies related to nighttime light imageries focused on extracting urban extent, leaving the spatial variation of radiance intensity insufficiently explored. With the help of global radiance calibrated DMSP-OLS datasets (NTLgrc), we proposed an innovative framework to explore the spatio-temporal trajectory of polycentric urban nighttime light hotspots. Firstly, NTLgrc was inter-annually calibrated to improve the consistency. Secondly, multi-resolution segmentation and region-growing SVM classification were employed to remove blooming effect and to extract potential clusters. At last, the urban hotspots were identified by a Gaussian volume model, and the resulting parameters were used to quantitatively depict hotspot features (i.e., intensity, morphology and centroid dynamics). The result shows that our framework successfully captures hotspots in polycentric urban area, whose Ra2 are over 0.9. Meanwhile, the spatio-temporal dynamics of the hotspot features intuitively reveal the impact of the regional urban growth pattern and planning strategies on human activities. Compared to previous studies, our framework is more robust and offers an effective way to describe hotspot pattern. Also, it provides a more comprehensive and spatial-explicit understanding regarding the interaction between urbanization pattern and human activities. Our findings are expected to be beneficial to governors in term of sustainable urban planning and decision making.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0303-2434 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1771
Permanent link to this record
 

 
Author Liu, J.; Deng, Y.; Wang, Y.; Huang, H.; Du, Q.; Ren, F.
Title Urban Nighttime Leisure Space Mapping with Nighttime Light Images and POI Data Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 3 Pages 541
Keywords Remote Sensing
Abstract (down) Urban nighttime leisure spaces (UNLSs), important urban sites of nighttime economic activity, have created enormous economic and social benefits. Both the physical features (e.g., location, shape, and area) and the social functions (e.g., commercial streets, office buildings, and entertainment venues) of UNLSs are important in UNLS mapping. However, most studies rely solely on census data or nighttime light (NTL) images to map the physical features of UNLSs, which limits UNLS mapping, and few studies perform UNLS mapping from a social function perspective. Point-of-interest (POI) data, which can reflect social activity functions, are needed. As a result, a novel methodological UNLS mapping framework, that integrates NTL images and POI data is required. Consequently, we first extracted high-NTL intensity and high-POI density areas from composite data as areas with high nightlife activity levels. Then, the POI data were analyzed to identify the social functions of leisure spaces revealing that nighttime leisure activities are not abundant in Beijing overall, the total UNLS area in Beijing is 31.08 km2, which accounts for only 0.2% of the total area of Beijing. In addition, the nightlife activities in the central urban area are more abundant than those in the suburbs. The main urban area has the largest UNLS area. Compared with the nightlife landmarks in Beijing established by the government, our results provide more details on the spatial pattern of nighttime leisure activities throughout the city. Our study aims to provide new insights into how multisource data can be leveraged for UNLS mapping to enable researchers to broaden their study scope. This investigation can also help government departments better understand the local nightlife situation to rationally formulate planning and adjustment measures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3018
Permanent link to this record
 

 
Author Li, M.; Koks, E.; Taubenböck, H.; van Vliet, J.
Title Continental-scale mapping and analysis of 3D building structure Type Journal Article
Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 245 Issue Pages 111859
Keywords Remote Sensing
Abstract (down) Urban land use is often characterized based on the presence of built-up land, while the land use intensity of different locations is ignored. This narrow focus is at least partially due to a lack of data on the vertical dimension of urban land. The potential of Earth observation data to fill this gap has already been shown, but this has not yet been applied at large spatial scales. This study aims to map urban 3D building structure, i.e. building footprint, height, and volume, for Europe, the US, and China using random forest models. Our models perform well, as indicated by R2 values of 0.90 for building footprint, 0.81 for building height, and 0.88 for building volume, for all three case regions combined. In our multidimensional input variables, we find that built-up density derived from the Global Urban Footprint (GUF) is the most important variable for estimating building footprint, while backscatter intensity of Synthetic Aperture Radar (SAR) is the most important variable for estimating building height. A combination of the two is essential to estimate building volume. Our analysis further highlights the heterogeneity of 3D building structure across space. Specifically, buildings in China tend to be taller on average (10.35 m) compared to Europe (7.37 m) and the US (6.69 m). At the same time, the building volume per capita in China is lowest, with 302.3 m3 per capita, while Europe and the US show estimates of 404.6 m3 and 565.4 m3, respectively. The results of this study (3D building structure data for Europe, the US, and China) are publicly available, and can be used for further analysis of urban environment, spatial planning, and land use projections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2918
Permanent link to this record
 

 
Author Manoli, G.; Fatichi, S.; Schlapfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E.
Title Magnitude of urban heat islands largely explained by climate and population Type Journal Article
Year 2019 Publication Nature Abbreviated Journal Nature
Volume 573 Issue 7772 Pages 55-60
Keywords Remote Sensing
Abstract (down) Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (DeltaTs) worldwide and find a nonlinear increase in DeltaTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of DeltaTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban-rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions.
Address Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:31485056 Approved no
Call Number GFZ @ kyba @ Serial 2669
Permanent link to this record
 

 
Author Meng, C.; Dou, Y.
Title Quantifying the Anthropogenic Footprint in Eastern China Type Journal Article
Year 2016 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 6 Issue Pages 24337
Keywords Remote Sensing
Abstract (down) Urban heat island (UHI) is one of the most focuses in urban climate study. The parameterization of the anthropogenic heat (AH) is crucial important in UHI study, but universal method to parameterize the spatial pattern of the AH is lacking now. This paper uses the NOAA DMSP/OLS nighttime light data to parameterize the spatial pattern of the AH. Two experiments were designed and performed to quantify the influences of the AH to land surface temperature (LST) in eastern China and 24 big cities. The annual mean heating caused by AH is up to 1 K in eastern China. This paper uses the relative LST differences rather than the absolute LST differences between the control run and contrast run of common land model (CoLM) to find the drivers. The heating effect of the anthropogenic footprint has less influence on relatively warm and wet cities.
Address Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:27067132 Approved no
Call Number LoNNe @ kyba @ Serial 1415
Permanent link to this record