|   | 
Details
   web
Records
Author (up) Baskaran, T.; Min, B.; Uppal, Y.
Title Election cycles and electricity provision: Evidence from a quasi-experiment with Indian special elections Type Journal Article
Year 2015 Publication Journal of Public Economics Abbreviated Journal Journal of Public Economics
Volume 126 Issue Pages 64-73
Keywords Remote Sensing; India; South Asia
Abstract We present evidence from India showing that state governments induce electoral cycles in electricity service provision. Our data and research strategy allow us to build on models of political business cycles and targeted distribution in two important ways. First, we demonstrate that by manipulating the flow of critical inputs into economic activity like electricity, elected leaders can influence economic outcomes even in contexts where they have constrained fiscal capacity. Second, we identify the effect of elections on electricity provision by focusing on special elections held for exogenous reasons. Our results show that state governments induce substantive increases in electricity service to constituencies that hold special elections. Manipulation of the power supply is stronger in contested constituencies and during special elections held in states where the government commands only a small majority. Overall, we find no evidence of positive welfare effects from the electoral manipulation of electricity supply.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0047-2727 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2029
Permanent link to this record
 

 
Author (up) Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D.
Title Development of a 2009 Stable Lights Product using DMSP-OLS data Type Journal Article
Year 2013 Publication Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings
Volume 30 Issue Pages 114
Keywords DMSP-OLS; remote sensing
Abstract Since 1994, NGDC has had an active program focused on global mapping of nighttime lights using the data collected by the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) sensors. The basic product is a global annual cloud-free composite, which averages the OLS visible band data for one satellite from the cloud-free segments of individual orbits. Over the years, NGDC has developed automatic algorithms for screening the quality of the nighttime visible band observations to remove areas contaminated by sunlight, moonlight, and the presence of clouds. In the Stable Lights product generation, fires and other ephemeral lights are removed based on their high brightness and short duration. Background noise is removed by setting thresholds based on visible band values found in areas known to be free of detectable lights. In 2010, NGDC released the version 4 time series of Stable Lights, spanning the years 1992-2009. These are available online at <http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-3026 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 207
Permanent link to this record
 

 
Author (up) Baugh, K.; Hsu, F.-C.; Elvidge, C.D.; Zhizhin, M.
Title Nighttime Lights Compositing Using the VIIRS Day-Night Band: Preliminary Results Type Journal Article
Year 2013 Publication Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings
Volume 35 Issue Pages 70
Keywords remote sensing; light pollution; VIIRS; satellite; radiometry
Abstract Dramatically improved nighttime lights capabilities are presented by the launch of the National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band (DNB) sensor. Building on 18 years of experience compositing nighttime data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), NOAA’s NGDC Earth Observation Group has started adapting their algorithms to process these new data. The concept of compositing nighttime data comprises combining only high quality data components over a period of time to improve sensitivity and coverage. For this work, flag image are compiled to describe image quality. The flag categories include: daytime, twilight, stray light, lunar illuminance, noisy edge of scan data, clouds, and no data. High quality data is defined as not having any of these attributes present. Two methods of reprojection are necessary due to data collection characteristics. Custom algorithms have been created to terrain-correct and reproject all data to a common 15 arc second grid. Results of compositing over two time periods in 2012 are presented to demonstrate data quality and initial capabilities. These data can be downloaded at http://www.ngdc.noaa.gov/eog/viirs/downloadviirsntl.html.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-3026 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 197
Permanent link to this record
 

 
Author (up) Bauhr, M. & Carlitz, R.
Title Transparency and the quality of local public service provision Type Journal Article
Year 2019 Publication The Quality of Government Institute Abbreviated Journal QOG
Volume Issue 5 Pages 1-43
Keywords Economics; Remote Sensing; public service delivery; Vietnam; Asia
Abstract Transparency has been widely promoted as a tool for improving public service

delivery; however, empirical evidence is inconclusive. We suggest that the effects of transparency on service provision are contingent on the nature of the service. Specifically, transparency is more likely to improve the quality of service provision when street-level discretion is high, since discretion increases information asymmetries, and, in the absence of transparency, allows officials to target public services in suboptimal ways. Using finely grained data from the Vietnam Provincial Governance and Public Administration Performance Index between 2011–2017, we show that communes that experience increases in transparency also experience improved quality of education and health (services characterized by greater discretion), while the quality of infrastructure

provision (characterized by less discretion) bears no relation to increased transparency. The findings help us understand when transparency can improve service provision, as well the effects of transparency reforms in non-democratic settings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2637
Permanent link to this record
 

 
Author (up) Bennett, M.M.; Smith, L.C.
Title Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics Type Journal Article
Year 2017 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 192 Issue Pages 176-197
Keywords Remote Sensing
Abstract Since the late 1990s, remotely sensed night-time lights (NTL) satellite imagery has been shown to correlate with socioeconomic parameters including urbanization, economic activity, and population. More recent research demonstrates that multitemporal NTL data can serve as a reliable proxy for change over time in these variables whether they are increasing or decreasing. Time series analysis of NTL data is especially valuable for detecting, estimating, and monitoring socioeconomic dynamics in countries and subnational regions where reliable official statistics may be lacking. Until 2012, multitemporal NTL imagery came primarily from the Defense Meteorological Satellite Program – Operational Linescan System (DMSP-OLS), for which digital imagery is available from 1992 to 2013. In October 2011, the launch of NASA/NOAA's Suomi National Polar-orbiting Partnership satellite, whose Visible Infrared Imaging Radiometer Suite (VIIRS) sensor has a Day/Night Band (DNB) specifically designed for capturing radiance from the Earth at night, marked the start of a new era in NTL data collection and applications. In light of these advances, this paper reviews progress in using multitemporal DMSP-OLS and VIIRS imagery to analyze urbanization, economic, and population dynamics across a range of geographic scales. An overview of data corrections and processing for comparison of multitemporal NTL imagery is provided, followed by a meta-analysis and integrative synthesis of these studies. Figures are included that visualize the capabilities of DMSP-OLS and VIIRS to capture socioeconomic change in the post-Soviet Russian Far East and war-torn Syria, respectively. Finally, future directions for NTL research are suggested, particularly in the areas of determining the fundamental causes of observed light and in leveraging VIIRS' superior sensitivity and spatial and radiometric resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2024
Permanent link to this record