|   | 
Details
   web
Records
Author (up) Alamús, R.; Bará, S.; Corbera, J.; Escofet, J.; Palà , V.; Pipia, L.; Tardà, A.
Title Ground-based hyperspectral analysis of the urban nightscape Type Journal Article
Year 2017 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing
Volume 124 Issue Pages 16-26
Keywords Instrumentation; Remote Sensing
Abstract Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-2716 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1613
Permanent link to this record
 

 
Author (up) Allik, T.; Ramboyong, L.; Roberts, M.; Walters, M.; Soyka, T.; Dixon, R.; Cho, J.
Title Enhanced oil spill detection sensors in low-light environments Type Conference Article
Year 2016 Publication Proc. SPIE 9827, Ocean Sensing and Monitoring VIII, 98270B (May 17, 2016) Abbreviated Journal Proc. SPIE 9827
Volume Issue Pages
Keywords Instrumentation; Sensors; Cameras; Long wavelength infrared; Short wave infrared radiation; Spectroscopy; Calibration; Remote sensing; Water; Near infrared; Night vision
Abstract Although advances have been made in oil spill remote detection, many electro-optic sensors do not provide real-time images, do not work well under degraded visual environments, nor provide a measure of extreme oil thickness in marine environments. A joint program now exists between BSEE and NVESD that addresses these capability gaps in remote sensing of oil spills. Laboratory experiments, calibration techniques, and field tests were performed at Fort Belvoir, Virginia; Santa Barbara, California; and the Ohmsett Test Facility in Leonardo, New Jersey. Weathered crude oils were studied spectroscopically and characterized with LWIR, and low-light-level visible/NIR, and SWIR cameras. We designed and fabricated an oil emulsion thickness calibration cell for spectroscopic analysis and ground truth, field measurements. Digital night vision cameras provided real-time, wide-dynamic-range imagery, and were able to detect and recognize oil from full sun to partial moon light. The LWIR camera provided quantitative oil analysis (identification) for >1 mm thick crude oils both day and night. Two filtered, co-registered, SWIR cameras were used to determine whether oil thickness could be measured in real time. Spectroscopic results revealed that oil emulsions vary with location and weathered state and some oils (e.g., ANS and Santa Barbara seeps) do not show the spectral rich features from archived Deep Water Horizon hyperspectral data. Multi-sensor imagery collected during the 2015 USCG Airborne Oil Spill Remote Sensing and Reporting Exercise and the design of a compact, multiband imager are discussed.
Address Active EO Inc.
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1475
Permanent link to this record
 

 
Author (up) Almpanidou, V.; Tsapalou, V.; Tsavdaridou, A.I.; Mazaris, A.D.
Title The dark side of raptors’ distribution ranges under climate change Type Journal Article
Year 2020 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume 35 Issue 6 Pages 1435-1443
Keywords Animals; Remote sensing
Abstract Context

Artificial light at night (ALAN) represents a significant threat to biodiversity. Given that protected areas (PAs) are in relative darkness compared to the surrounding sites, they could be considered an effective tool towards eliminating the impacts of ALAN. However, the extent to which climate change-induced shifts would drive species out of PAs and thus, alter their exposure to ALAN remains an open question.

Objectives

We assessed the extent and protection coverage of dark areas across the current and future distributions of 39 raptor species of European conservation interest.

Methods

We initially developed a set of distribution models using current and projected climatic variables. Next, we used a satellite dataset of nighttime lights composite to determine the spread of ALAN within the raptors’ ranges. Finally, we applied three indices of proportional changes in the expansion of suitable habitats and dark areas to quantify patterns in ALAN within the current and future raptors’ ranges across Europe.

Results

Our analyses revealed that potential future distribution shifts of raptors will lead to changes in the exposure of species to ALAN, with these patterns being rather unfavourable for most of them. Still, PAs in Europe were found to offer a relative high proportion of dark areas which overlap with the current and future raptors range.

Conclusions

Our findings provided some first insights into the spatial conflict between species ranges and ALAN, considering potential distribution shifts driven by climate change. The proposed methodology offers the means to identify potential dark refugia towards prioritizing conservation actions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3157
Permanent link to this record
 

 
Author (up) Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D.
Title Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data Type Journal Article
Year 2005 Publication Computers, Environment and Urban Systems Abbreviated Journal Computers, Environment and Urban Systems
Volume 29 Issue 2 Pages 179-195
Keywords Remote Sensing
Abstract This paper describes a methodology to assess the evidence of human presence and humanactivities in the Brazilian Amazonia region using DMSP/OLS night-time satellite sensorimagery. It consists on exploring the potential of the sensor data for regional studies analysingthe correlation between DMSP night-time light foci and population, and the correlation be-tween DMSP night-time light foci and electrical power consumption. In the mosaic of DMSP/OLS night-time light imagery from September 1999, 248 towns were detected from a total of749municıpiosin Amazonia. It was found that the night-time light foci were related to human presence in the region, including urban settlements, mining, industries, and civil construction,observed in ancillary Landsat TM and JERS imagery data. The analysis considering only thestate of Para revealed a linear relation (R2¼0:79) between urban population from the 1996census data and DMSP night-time light foci. Similarly, electrical power consumption for 1999was linearly correlated with DMSP night-time light foci. Thus the DMSP/OLS imagery can beused as an indicator of human presence in the analysis of spatial–temporal patterns in theAmazonia region. These results are very useful considering the continental dimension ofAmazonia, the absence of demographic information between the official population census(every 10 years), and the dynamics and complexity of human activities in the region. ThereforeDMSP night-time light foci are a valuable data source for global studies, modelling, and planning activities when the human dimension must be considered throughout Amazonia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0198-9715 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2221
Permanent link to this record
 

 
Author (up) Amaral, S.; Monteiro, A.M.V.; Camara, G.; Quintanilha, J.A.
Title DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon Type Journal Article
Year 2006 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 27 Issue 5 Pages 855-870
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 701
Permanent link to this record