toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fehrer, D.; Krarti, M. url  doi
openurl 
  Title Spatial distribution of building energy use in the United States through satellite imagery of the earth at night Type Journal Article
  Year 2018 Publication Building and Environment Abbreviated Journal Building and Environment  
  Volume 142 Issue Pages 252-264  
  Keywords remote sensing  
  Abstract Despite the importance of geospatial analysis of energy use in buildings, the data available for such exercises is limited. A potential solution is to use geospatial information, such as that obtained from satellites, to disaggregate building energy use data to a more useful scale. Many researchers have used satellite imagery to estimate the extent of human activities, including building energy use and population distribution. Much of the reported work has been carried out in rapidly developing countries such as India and China where urban development is dynamic and not always easy to measure. In countries with less rapid urbanization, such as the United States, there is still value in using satellite imagery to estimate building energy use for the purposes of identifying energy efficiency opportunities and planning electricity transmission. This study evaluates nighttime light imagery obtained from the VIIRS instrument aboard the SUOMI NPP satellite as a predictor of building energy use intensity within states, counties, and cities in the United States. It is found that nighttime lights can explain upwards of 90% of the variability in energy consumption in the United States, depending on conditions and geospatial scale. The results of this research are used to generate electricity and fuel consumption maps of the United States with a resolution of less than 200 square meters. The methodologies undertaken in this study can be replicated globally to create more opportunities for geospatial energy analysis without the hurdles often associated with disaggregated building energy use data collection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1938  
Permanent link to this record
 

 
Author Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. url  doi
openurl 
  Title A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B Type Journal Article
  Year 2018 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 215 Issue Pages 300-312  
  Keywords Remote Sensing  
  Abstract Artificial light at night (ALAN) provides a unique footprint of human activities and settlements. However, the adverse effects of ALAN on human health and ecosystems have not been well understood. Because of a lack of high resolution data, studies of ALAN in China have been confined to coarse resolution, and fine-scale details are missing. The fine details of ALAN are pertinent, because the highly dense population in Chinese cities has created a distinctive urban lighting pattern. In this paper, we introduced a new generation of high spatial resolution and multi-spectral night-time light imagery from the satellite JL1-3B. We examined its effectiveness for monitoring the spatial pattern and discriminating the types of artificial light based on a case study of Hangzhou, China. Specifically, local Moran's I analysis was applied to identify artificial light hotspots. Then, we analyzed the relationship between artificial light brightness and land uses at the parcel-level, which were generated from GF-2 imagery and open social datasets. Third, a machine learning based method was proposed to discriminate the type of lighting sources – between high pressure sodium lamps (HPS) and light-emitting diode lamps (LED) – by incorporating their spectral information and morphology feature. The result shows a complicated heterogeneity of illumination characteristics across different land uses, where main roads, commercial and institutional areas were brightly lit while residential area, industrial area and agricultural land were dark at night. It further shows that the proposed method was effective at separating light emitted by HPS and LED, with an overall accuracy and kappa coefficient of 83.86% and 0.67, respectively. This study demonstrates the effectiveness of JL1-3B and its superiority over previous night-time light data in detecting details of lighting objects and the nightscape pattern, and suggests that JL1-3B and alike could open up new opportunities for the advancement of night-time remote sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1945  
Permanent link to this record
 

 
Author Al Zahrani, M.H.; Omar, A.I.; Abdoon, A.M.O.; Ibrahim, A.A.; Alhogail, A.; Elmubarak, M.; Elamin, Y.E.; AlHelal, M.A.; Alshahrani, A.M.; Abdelgader, T.M.; Saeed, I.; El Gamri, T.B.; Alattas, M.S.; Dahlan, A.A.; Assiri, A.M.; Maina, J.; Li, X.H.; Snow, R.W. url  doi
openurl 
  Title Cross-border movement, economic development and malaria elimination in the Kingdom of Saudi Arabia Type Journal Article
  Year 2018 Publication BMC Medicine Abbreviated Journal BMC Med  
  Volume 16 Issue 1 Pages 98  
  Keywords Remote Sensing; Human Health  
  Abstract Malaria at international borders presents particular challenges with regards to elimination. International borders share common malaria ecologies, yet neighboring countries are often at different stages of the control-to-elimination pathway. Herein, we present a case study on malaria, and its control, at the border between Saudi Arabia and Yemen. Malaria program activity reports, case data, and ancillary information have been assembled from national health information systems, archives, and other related sources. Information was analyzed as a semi-quantitative time series, between 2000 and 2017, to provide a plausibility framework to understand the possible contributions of factors related to control activities, conflict, economic development, migration, and climate. The malaria recession in the Yemeni border regions of Saudi Arabia is a likely consequence of multiple, coincidental factors, including scaled elimination activities, cross-border vector control, periods of low rainfall, and economic development. The temporal alignment of many of these factors suggests that economic development may have changed the receptivity to the extent that it mitigated against surges in vulnerability posed by imported malaria from its endemic neighbor Yemen. In many border areas of the world, malaria is likely to be sustained through a complex congruence of factors, including poverty, conflict, and migration.  
  Address Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. rsnow@kemri-wellcome.org  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1741-7015 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29940950 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1948  
Permanent link to this record
 

 
Author Ge, W.; Yang, H.; Zhu, X.; Ma, M.; Yang, Y. url  doi
openurl 
  Title Ghost City Extraction and Rate Estimation in China Based on NPP-VIIRS Night-Time Light Data Type Journal Article
  Year 2018 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 7 Issue 6 Pages 219  
  Keywords Remote Sensing  
  Abstract The ghost city phenomenon is a serious problem resulting from the rapid urbanization process in China. Estimation of the ghost city rate (GCR) can provide information about vacant dwellings. This paper developed a methodology to quantitatively evaluate GCR values at the national scale using multi-resource remote sensing data. The Suomi National Polar-Orbiting Partnership–Visible Infrared Imaging Radiometer (NPP-VIIRS) night-time light data and moderate resolution imaging spectroradiometer (MODIS) land cover data were used in the evaluation of the GCR values in China. The average ghost city rate (AGCR) was 35.1% in China in 2013. Shanghai had the smallest AGCR of 21.7%, while Jilin has the largest AGCR of 47.27%. There is a significant negative correlation between both the provincial AGCR and the per capita disposable income of urban households (R = −0.659, p < 0.01) and the average selling prices of commercial buildings (R =−0.637, p < 0.01). In total, 31 ghost cities are mainly concentrated in the economically underdeveloped inland provinces. Ghost city areas are mainly located on the edge of urban built-up areas, and the spatial pattern of ghost city areas changed in different regions. This approach combines statistical data with the distribution of vacant urban areas, which is an effective method to capture ghost city information.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1949  
Permanent link to this record
 

 
Author Jiang, W.; He, G.; Leng, W.; Long, T.; Wang, G.; Liu, H.; Peng, Y.; Yin, R.; Guo, H. url  doi
openurl 
  Title Characterizing Light Pollution Trends across Protected Areas in China Using Nighttime Light Remote Sensing Data Type Journal Article
  Year 2018 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 7 Issue 7 Pages 243  
  Keywords Remote Sensing  
  Abstract Protected areas (PAs) with natural, ecological, and cultural value play important roles related to biological processes, biodiversity, and ecosystem services. Over the past four decades, the spatial range and intensity of light pollution in China has experienced an unprecedented increase. Few studies have been documented on the light pollution across PAs in China, especially in regions that provide a greater amount of important biodiversity conservation. Here, nighttime light satellite images from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) were selected to characterize light pollution trends across PAs using nighttime light indexes and hot spot analysis, and then the light pollution changes in PAs were classified. Furthermore, the causes of light pollution changes in PAs were determined using high-resolution satellite images and statistical data. The results showed the following: (1) Approximately 57.30% of PAs had an increasing trend from 1992 to 2012, and these PAs were mainly located in the eastern region, the central region, and a small part of the western region of China. Hot spot analysis showed that the patterns of change for the total night light and night light mean had spatial agglomeration characteristics; (2) The PAs affected by light pollution changes were divided into eight classes, of which PAs with stable trends accounted for 41%, and PAs with high increasing trends accounted for 10%. PAs that had high increasing trends with low density accounted for the smallest amount, i.e., only 1%; (3) The factors influencing light pollution changes in PAs included the distance to urban areas, mineral exploitation, and tourism development and the migration of residents. Finally, based on the status of light pollution encroachment into PAs, strategies to control light pollution and enhance the sustainable development of PAs are recommended.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1952  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: