|   | 
Details
   web
Records
Author Xu, M.; He, C.; Liu, Z.; Dou, Y.
Title How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis Type Journal Article
Year 2016 Publication PloS one Abbreviated Journal PLoS One
Volume 11 Issue 5 Pages (down) e0154839
Keywords remote sensing
Abstract Effective and timely quantification of the spatiotemporal pattern of urban expansion in China is important for the assessment of its environmental effects. However, the dynamics of the most recent urban expansions in China since 2012 have not yet been adequately explained due to a lack of current information. In this paper, our objective was to quantify spatiotemporal patterns of urban expansion in China between 1992 and 2015. First, we extracted information on urban expansion in China between 1992 and 2015 by integrating nighttime light data, vegetation index data, and land surface temperature data. Then we analyzed the spatiotemporal patterns of urban expansion at the national and regional scales, as well as at that of urban agglomerations. We found that China experienced a rapid and large-scale process of urban expansion between 1992 and 2015, with urban land increasing from 1.22 x 104 km2 to 7.29 x 104 km2, increasing in size nearly fivefold and with an average annual growth rate of 8.10%, almost 2.5 times as rapid as the global average. We also found that urban land in China expanded mainly by occupying 3.31 x 104 km2 of cropland, which comprised 54.67% of the total area of expanded urban land. Among the three modes of growth-infilling, edge expansion, and leapfrog-edge expansion was the main cause of cropland loss. Cropland loss resulting from edge expansion of urban land totalled 2.51 x 104 km2, accounting for over 75% of total cropland loss. We suggest that effective future management with respect to edge expansion of urban land is needed to protect cropland in China.
Address Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:27144589; PMCID:PMC4856333 Approved no
Call Number LoNNe @ kyba @ Serial 1438
Permanent link to this record
 

 
Author Ou, J.; Liu, X.; Li, X.; Li, M.; Li, W.
Title Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data Type Journal Article
Year 2015 Publication PloS one Abbreviated Journal PLoS One
Volume 10 Issue 9 Pages (down) e0138310
Keywords Remote Sensing
Abstract Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.
Address School of Geography and Planning, and Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:26390037; PMCID:PMC4577086 Approved no
Call Number GFZ @ kyba @ Serial 2272
Permanent link to this record
 

 
Author Xue, X.; Lin, Y.; Zheng, Q.; Wang, K.; Zhang, J.; Deng, J.; Abubakar, G.A.; Gan, M.
Title Mapping the fine-scale spatial pattern of artificial light pollution at night in urban environments from the perspective of bird habitats Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 702 Issue Pages (down) 134725
Keywords Remote Sensing; Animals; ALAN pollution; Circuitscape; Land cover; Nighttime light image; Urban ecology
Abstract The increase in artificial light at night (ALAN) is a global concern, while the pattern of ALAN pollution inside urban areas has not yet been fully explored. To fill this gap, we developed a novel method to map fine-scale ALAN pollution patterns in urban bird habitats using high spatial resolution ALAN satellite data. First, an ALAN pollution map was derived from JL1-3B satellite images. Then, the core habitat nodes (CHNs) representing the main habitats for urban birds to inhabit were identified from the land cover map, which was produced using Gaofen2 (GF2) data, and the high probability corridors (HPCs), indicating high connectivity paths, were derived from Circuitscape software. Finally, the ALAN patterns in the CHNs and HPCs were analysed, and the mismatch index was proposed to evaluate the trade-off between human activity ALAN demands and ALAN supply for the protection of urban birds. The results demonstrated that 115 woodland patches covering 4149.0ha were selected as CHNs, and most of the CHNs were large urban parks or scenic spots located in the urban fringe. The 2923 modelled HPCs occupying 1179.2ha were small remaining vegetation patches and vegetated corridors along the major transport arteries. The differences in the ALAN pollution patterns between CHNs and HPCs were mainly determined by the characteristics of the green space patches and the light source types. The polluted regions in the CHNs were clustered in a few regions that suffered from concentrated and intensive ALAN, while most of the CHNs remained unaffected. In contrast, the 727 HPCs were mainly polluted by street lighting was scattered and widely distributed, resulting a more varying influence to birds than that in the CHNs. Relating patterns of the ALAN to bird habitats and connectivity provides meaningful information for comprehensive planning to alleviate the disruptive effects of ALAN pollution.
Address College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. Electronic address: ganmuye@zju.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:31734607 Approved no
Call Number GFZ @ kyba @ Serial 2765
Permanent link to this record
 

 
Author Wang, H.; Li, J.; Gao, M.; Chan, T.-C.; Gao, Z.; Zhang, M.; Li, Y.; Gu, Y.; Chen, A.; Yang, Y.; Ho, H.C.
Title Spatiotemporal variability in long-term population exposure to PM2.5 and lung cancer mortality attributable to PM2.5 across the Yangtze River Delta (YRD) region over 2010–2016: A multistage approach Type Journal Article
Year 2020 Publication Chemosphere Abbreviated Journal Chemosphere
Volume in press Issue Pages (down) 127153
Keywords Remote Sensing
Abstract The Yangtze River Delta region (YRD) is one of the most densely populated regions in the world, and is frequently influenced by fine particulate matter (PM2.5). Specifically, lung cancer mortality has been recognized as a major health burden associated with PM2.5. Therefore, this study developed a multistage approach 1) to first create dasymetric population data with moderate resolution (1 km) by using a random forest algorithm, brightness reflectance of nighttime light (NTL) images, a digital elevation model (DEM), and a MODIS-derived normalized difference vegetation index (NDVI), and 2) to apply the improved population dataset with a MODIS-derived PM2.5 dataset to estimate the association between spatiotemporal variability of long-term population exposure to PM2.5 and lung cancer mortality attributable to PM2.5 across YRD during 2010–2016 for microscale planning. The created dasymetric population data derived from a coarse census unit (administrative unit) were fairly matched with census data at a fine spatial scale (street block), with R2 and RMSE of 0.64 and 27,874.5 persons, respectively. Furthermore, a significant urban-rural difference of population exposure was found. Additionally, population exposure in Shanghai was 2.9–8 times higher than the other major cities (7-year average: 192,000 μg·people/m3·km2). More importantly, the relative risks of lung cancer mortality in high-risk areas were 28%–33% higher than in low-risk areas. There were 12,574–14,504 total lung cancer deaths attributable to PM2.5, and lung cancer deaths in each square kilometer of urban areas were 7–13 times higher than for rural areas. These results indicate that moderate-resolution information can help us understand the spatiotemporal variability of population exposure and related health risk in a high-density environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2938
Permanent link to this record
 

 
Author Chang, S.; Wang, J.; Zhang, F.; Niu, L.; Wang, Y.
Title A study of the impacts of urban expansion on vegetation primary productivity levels in the Jing-Jin-Ji region, based on nighttime light data Type Journal Article
Year 2020 Publication Journal of Cleaner Production Abbreviated Journal Journal of Cleaner Production
Volume 263 Issue Pages (down) 121490
Keywords Remote Sensing
Abstract Rapid urbanization has generated enormous pressure on natural resources. This study illustrates urban expansion in the Jing-Jin-Ji region and its influence on vegetation primary productivity. Tempo-spatial correlations between a vegetation index and nighttime light intensity are discussed to assess the urbanization effect quantitatively. The results show that: (1) From 1998 to 2018, urban areas gradually expanded outward from their original conglomerations. (2) In the past 20 years, Beijing and Tianjin have developed in different ways. The surrounding satellite cities have mostly developed concentrically, although some cities in Hebei province have developed more linearly. (3) The average primary productivity of the study area in 1998, 2003, 2008, 2013, and 2018 was generally lower than that of non-urban regions of the same year. (4) During the period from 1998 to 2018, the primary productivity of vegetation in the urban built-up areas increased, and the condition of the plant improved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2925
Permanent link to this record