|   | 
Details
   web
Records
Author Ban, Y.; Cao, C.; Shao, X.
Title Assessment of scan-angle dependent radiometric bias of Suomi-NPP VIIRS day/night band from night light point source observations Type Journal Article
Year 2015 Publication Proc. SPIE 9607, Earth Observing Systems XX, 2015 Abbreviated Journal
Volume Issue Pages (down) 960727
Keywords Remote sensing; Suomi NPP; VIIRS DNB; calibration
Abstract The low gain stage of VIIRS Day/Night Band (DNB) on Suomi-NPP is calibrated using onboard solar diffuser. The calibration is then transferred to the high gain stage of DNB based on the gain ratio determined from data collected along solar terminator region. The calibration transfer causes increase of uncertainties and affects the accuracy of the low light radiances observed by DNB at night. Since there are 32 aggregation zones from nadir to the edge of the scan and each zone has its own calibration, the calibration versus scan angle of DNB needs to be independently assessed. This study presents preliminary analysis of the scan-angle dependence of the light intensity from bridge lights, oil platforms, power plants, and flares observed by VIIRS DNB since 2014. Effects of atmospheric path length associated with scan angle are analyzed. In addition, other effects such as light changes at the time of observation are also discussed. The methodology developed will be especially useful for JPSS J1 VIIRS due to the nonlinearity effects at high scan angles, and the modification of geolocation software code for different aggregation modes. It is known that J1 VIIRS DNB has large nonlinearity across aggregation zones, and requires new aggregation modes, as well as more comprehensive validation.
Address Univ. of Maryland, College Park, USA
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1259
Permanent link to this record
 

 
Author Lee, S.; Wang, W.; Cao, C.
Title JPSS-1 VIIRS DNB nonlinearity and its impact on SDR calibration Type Journal Article
Year 2015 Publication Proc. SPIE 9607, Earth Observing Systems XX, 2015 Abbreviated Journal
Volume Issue Pages (down) 960717
Keywords Remote sensing; Suomi NPP; VIIRS DNB; JPSS-1; calibration
Abstract During JPSS-1 VIIRS testing at Raytheon El Segundo, a larger than expected radiometric response nonlinearity was discovered in Day-Nigh Band (DNB). In addition, the DNB nonlinearity is aggregation mode dependent, where the most severe non-linear behavior are the aggregation modes used at high scan angles (<~50 degree). The DNB aggregation strategy was subsequently modified to remove modes with the most significant non-linearity. We characterized the DNB radiometric response using pre-launch tests with the modified aggregation strategy. The test data show the DNB non-linearity varies at each gain stages, detectors and aggregation modes. The non-linearity is most significant in the Low Gain Stage (LGS) and could vary from sample-to-sample. The non-linearity is also more significant in EV than in calibration view samples. The HGS nonlinearity is difficult to quantify due to the higher uncertainty in determining source radiance. Since the radiometric response non-linearity is most significant at low dn ranges, it presents challenge in DNB cross-stage calibration, an critical path to calibration DNB’s High Gain Stage (HGS) for nighttime imagery. Based on the radiometric characterization, we estimated the DNB on-orbit calibration accuracy and compared the expected DNB calibration accuracy using operational calibration approaches. The analysis showed the non-linearity will result in cross-stage gain ratio bias, and have the most significant impact on HGS. The HGS calibration accuracy can be improved when either SD data or only the more linearly behaved EV pixels are used in cross-stage calibration. Due to constrain in test data, we were not able to achieve a satisfactory accuracy and uniformity for the JPSS-1 DNB nighttime imagery quality. The JPSS-1 DNB nonlinearity is a challenging calibration issue which will likely require special attention after JPSS-1 launch.
Address NOAA National Environmental Satellite, Data, and Information Service, USA
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1262
Permanent link to this record
 

 
Author Roman, M.O.; Stokes, E.C.; Shrestha, R.; Wang, Z.; Schultz, L.; Carlo, E.A.S.; Sun, Q.; Bell, J.; Molthan, A.; Kalb, V.; Ji, C.; Seto, K.C.; McClain, S.N.; Enenkel, M.
Title Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria Type Journal Article
Year 2019 Publication PloS one Abbreviated Journal PLoS One
Volume 14 Issue 6 Pages (down) e0218883
Keywords Remote Sensing
Abstract A real-time understanding of the distribution and duration of power outages after a major disaster is a precursor to minimizing their harmful consequences. Here, we develop an approach for using daily satellite nighttime lights data to create spatially disaggregated power outage estimates, tracking electricity restoration efforts after disasters strike. In contrast to existing utility data, these estimates are independent, open, and publicly-available, consistently measured across regions that may be serviced by several different power companies, and inclusive of distributed power supply (off-grid systems). We apply the methodology in Puerto Rico following Hurricane Maria, which caused the longest blackout in US history. Within all of the island's settlements, we track outages and recovery times, and link these measures to census-based demographic characteristics of residents. Our results show an 80% decrease in lights, in total, immediately after Hurricane Maria. During the recovery, a disproportionate share of long-duration power failures (> 120 days) occurred in rural municipalities (41% of rural municipalities vs. 29% of urban municipalities), and in the northern and eastern districts. Unexpectedly, we also identify large disparities in electricity recovery between neighborhoods within the same urban area, based primarily on the density of housing. For many urban areas, poor residents, the most vulnerable to increased mortality and morbidity risks from power losses, shouldered the longest outages because they lived in less dense, detached housing where electricity restoration lagged. The approach developed in this study demonstrates the potential of satellite-based estimates of power recovery to improve the real-time monitoring of disaster impacts, globally, at a spatial resolution that is actionable for the disaster response community.
Address Harvard Humanitarian Initiative, Cambridge, Massachusetts, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:31251791 Approved no
Call Number GFZ @ kyba @ Serial 2564
Permanent link to this record
 

 
Author Andrade-Pacheco, R.; Savory, D.J.; Midekisa, A.; Gething, P.W.; Sturrock, H.J.W.; Bennett, A.
Title Household electricity access in Africa (2000-2013): Closing information gaps with model-based geostatistics Type Journal Article
Year 2019 Publication PloS one Abbreviated Journal PLoS One
Volume 14 Issue 5 Pages (down) e0214635
Keywords Remote Sensing
Abstract Household electricity access data in Africa are scarce, particularly at the subnational level. We followed a model-based Geostatistics approach to produce maps of electricity access between 2000 and 2013 at a 5 km resolution. We collated data from 69 nationally representative household surveys conducted in Africa and incorporated nighttime lights imagery as well as land use and land cover data to produce maps of electricity access between 2000 and 2013. The information produced here can be an aid for understanding of how electricity access has changed in the region during this 14 year period. The resolution and the continental scale makes it possible to combine these data with other sources in applications in the socio-economic field, both at a local or regional level.
Address Malaria Elimination Initiative, Institute for Global Health Sciences, UCSF, San Francisco, CA, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:31042727; PMCID:PMC6493706 Approved no
Call Number GFZ @ kyba @ Serial 2531
Permanent link to this record
 

 
Author Lu, Y.; Coops, N.C.
Title Bright lights, big city: Causal effects of population and GDP on urban brightness Type Journal Article
Year 2018 Publication PloS one Abbreviated Journal PLoS One
Volume 13 Issue 7 Pages (down) e0199545
Keywords Remote Sensing
Abstract Cities are arguably both the cause, and answer, to societies' current sustainability issues. Urbanization is the interplay between a city's physical growth and its socio-economic development, both of which consume a substantial amount of energy and resources. Knowledge of the underlying driver(s) of urban expansion facilitates not only academic research but, more importantly, bridges the gap between science, policy drafting, and practical urban management. An increasing number of researchers are recognizing the benefits of innovative remotely sensed datasets, such as nighttime lights data (NTL), as a proxy to map urbanization and subsequently examine the driving socio-economic variables in cities. We further these approaches, by taking a trans-pacific view, and examine how an array of socio-economic ind0icators of 25 culturally and economically important urban hubs relate to long term patterns in NTL for the past 21 years. We undertake a classic econometric approach-panel causality tests which allow analysis of the causal relationships between NTL and socio-economic development across the region. The panel causality test results show a contrasting effect of population and gross domestic product (GDP) on NTL in fast, and slowly, changing cities. Information derived from this study quantitatively chronicles urban activities in the pan-Pacific region and potentially offers data for studies that spatially track local progress of sustainable urban development goals.
Address Integrated Remote Sensing Studio, Forest Recourses Management, University of British Columbia, Vancouver, BC, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:29995923 Approved no
Call Number GFZ @ kyba @ Serial 1963
Permanent link to this record