toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Song, J.; Tong, X.; Wang, L.; Zhao, C.; Prishchepov, A.V. url  doi
openurl 
  Title Monitoring finer-scale population density in urban functional zones: A remote sensing data fusion approach Type Journal Article
  Year 2019 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning  
  Volume 190 Issue Pages (down) 103580  
  Keywords Remote Sensing; nighttime light; numerical methods  
  Abstract Spatial distribution information on population density is essential for understanding urban dynamics. In recent decades, remote sensing techniques have often been applied to assess population density, particularly night-time light data (NTL). However, such attempts have resulted in mapped population density at coarse/medium resolution, which often limits the applicability of such data for fine-scale territorial planning. The improved quality and availability of multi-source remote sensing imagery and location-based service data (LBS) (from mobile networks or social media) offers new potential for providing more accurate population information at the micro-scale level. In this paper, we developed a fine-scale population distribution mapping approach by combining the functional zones (FZ) mapped with high-resolution satellite images, NTL data, and LBS data. Considering the possible variations in the relationship between population distribution and nightlight brightness in functional zones, we tested and found spatial heterogeneity of the relationship between NTL and the population density of LBS samples. Geographically weighted regression (GWR) was thus implemented to test potential improvements to the mapping accuracy. The performance of the following four models was evaluated: only ordinary least squares regression (OLS), only GWR, OLS with functional zones (OLS&FZ) and GWR with functional zones (GWR&FZ). The results showed that NTL-based GWR&FZ was the most accurate and robust approach, with an accuracy of 0.71, while the mapped population density was at a unit of 30 m spatial resolution. The detailed population density maps developed in our approach can contribute to fine-scale urban planning, healthcare and emergency responses in many parts of the world.  
  Address Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark; songjinchao08(at)163.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2516  
Permanent link to this record
 

 
Author Liu, Y.; Zhang, X.; Pan, X.; Ma, X.; Tang, M. url  doi
openurl 
  Title The spatial integration and coordinated industrial development of urban agglomerations in the Yangtze River Economic Belt, China Type Journal Article
  Year 2020 Publication Cities Abbreviated Journal Cities  
  Volume 104 Issue Pages (down) 102801  
  Keywords Remote Sensing  
  Abstract Urban agglomeration is the engine of national development and regional prosperity. Although extensive work has investigated issues related to this new form of spatial governance, few studies have directly illustrated the spatial integration of urban agglomeration and its relationship with industrial development. This paper employs nighttime light data and industrial enterprise datasets to investigate the spatial integration and industrial development in the Yangtze River Economic Belt (YREB) of China for 1995–2015. We here illustrate the significant relationship between the spatial integration of urban agglomerations and the characteristics of industrial development. In the process of spatial integration, urban form, intercity relation and their evolution show clear regional differences. Because of the differences in socio-economic and geographical characteristics, urban systems are more advanced and closely related in developed areas. A significant negative (positive) spatial correlation between industrial specialization (diversification) and urban form is supported by using bivariate Moran's I, and spatial clustering patterns are clearly different across the three urban agglomerations. A panel regression reveals that intercity relations are significantly associated with the characteristics of industrial development. Higher levels of industrial diversification and competition are associated with weaker intercity relations, while industrial structures similarities are reversed. These findings could be used to formulate reasonable policies and plans and to support future regional spatial integration and coordinated development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-2751 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2986  
Permanent link to this record
 

 
Author Heger, M.P.; Neumayer, E. url  doi
openurl 
  Title The impact of the Indian Ocean tsunami on Aceh's long-term economic growth Type Journal Article
  Year 2019 Publication Journal of Development Economics Abbreviated Journal Journal of Development Economics  
  Volume 141 Issue Pages (down) 102365  
  Keywords Remote Sensing; Natural disasters; Aceh; Indonesia  
  Abstract Existing studies typically find that natural disasters have negative economic consequences, resulting in, at best, a recovery to trend after initial losses or, at worst, longer term sustained losses. We exploit the unexpected nature of the 2004 Indian Ocean tsunami for carrying out a quasi-experimental difference-in-differences analysis of flooded districts and sub-districts in Aceh. The Indonesian province saw the single largest aid and reconstruction effort of any developing world region ever afflicted by a natural disaster. We show that this effort triggered higher long-term economic output than would have happened in the absence of the tsunami.  
  Address The World Bank, Washington D.C., USA  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3878 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2558  
Permanent link to this record
 

 
Author Wang, C.; Chen, Z.; Yang, C.; Li, Q.; Wu, Q.; Wu, J.; Zhang, G.; Yu, B. url  doi
openurl 
  Title Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: A comparison with NPP-VIIRS data Type Journal Article
  Year 2020 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation  
  Volume 85 Issue Pages (down) 101989  
  Keywords Remote Sensing  
  Abstract Nighttime light (NTL) remote sensing data have been widely used to derive socioeconomic indices at national and regional scales. However, few studies analyzed the factors that may explain NTL variations at a fine scale due to the limited resolution of existing NTL data. As a new generation NTL satellite, Luojia 1-01 provides NTL data with a finer spatial resolution of ∼130 m and can be used to assess the relationship between NTL intensity and artificial surface features on an unprecedented scale. This study represents the first efforts to assess the relationship between Luojia 1-01 NTL intensity and artificial surface features at the parcel level in comparison to the Suomi National Polar-orbiting Partnership-Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data. Points-of-interest (POIs) and land-use/land-cover (LULC) data were used in random forest (RF) regression models for both Luojia 1-01 and NPP-VIIRS to analyze the feature contribution of artificial surface features to NTL intensity. The results show that luminosity variations in Luojia 1-01 data for different land-use types were more significant than those in NPP-VIIRS data because of the finer spatial resolution and wider measurement range. Seventeen variables extracted from POI and LULC data explained the Luojia 1-01 and NPP-VIIRS NTL intensity, with a good out-of-bag score of 0.62 and 0.76, respectively. Moreover, Luojia 1-01 data had fewer “blooming” phenomena than NPP-VIIRS data, especially for cropland, water body, and rural area. Luojia 1-01 is more suitable for estimating socioeconomic activities and can attain more comprehensive information on human activities, since the feature contribution of POI variables is more sensitive to NTL intensity in the Luojia 1-01 RF regression model than that in the NPP-VIIRS RF regression model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2745  
Permanent link to this record
 

 
Author Chen, X.; Jia, X.; Pickering, M. url  doi
openurl 
  Title A Nighttime Lights Adjusted Impervious Surface Index (NAISI) with Integration of Landsat Imagery and Nighttime Lights Data from International Space Station Type Journal Article
  Year 2019 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation  
  Volume 83 Issue Pages (down) 101889  
  Keywords Remote Sensing  
  Abstract Accurate mapping of impervious surface is essential for both urbanization monitoring and micro-ecosystem research. However, the confusion between impervious surface and bare soil is the major concern due to their high spectral similarity in optical imagery. Integration of multi-sensor images is considered to offer a better capacity for distinguishing impervious surface from background. In this paper, a new impervious surface index namely nighttime light adjusted impervious surface index (NAISI), which integrates information from Landsat and nighttime lights (NTL) data from International Space Station (NTL-ISS), is proposed. Parallel to baseline subtraction approaches, NAISI integrate the information from the first component of principal component (PC) transformation of NTL-ISS, the Soil Adjusted Vegetation Index (SAVI) and the third component of tasseled cap transform (TC3) of the Landsat data. Visual interpretation and quantitative indices (SDI, Kappa and overall accuracy) were adopted to elevate the accuracy and separability of NAISI. Comparative analysis with NTL derived light intensity, optical indices, as well as existing optical-NTL indices were conducted to examine the performance of NAISI. Results indicate that NAISI achieves a more promising capability in impervious surface mapping. This demonstrates the superiority of integration of optical and nighttime lights information for imperviousness detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2658  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: