|   | 
Details
   web
Records
Author Levin, N.; Phinn, S.
Title Illuminating the capabilities of Landsat 8 for mapping night lights Type Journal Article
Year 2016 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 182 Issue (up) Pages 27-38
Keywords Remote Sensing; Instrumentation
Abstract Remote sensing of night-lights has been enhanced in recent years with the availability of the new VIIRS Day and Night band, the commercial EROS-B satellite and astronaut photographs from the International Space Station. However, dedicated space-borne multispectral sensors offering radiance calibrated night lights imagery are yet to be launched. Here we examined the capabilities of Landsat 8 to acquire night time light images of the Earth. Examining seven night-time Landsat 8 scenes, we found that brightly lit areas in both urban (Berlin, Las Vegas, Nagoya and Tel-Aviv) and gas flares (Basra, Kuwait) areas were detected in all eight bands of Landsat 8. The threshold for detection of lit areas was approximately 0.4 W/m2/μm/sr in bands 1–5 and 8 of Landsat 8. This threshold level was higher than Landsat dark noise levels, and slightly lower than post launch Landsat 8 OLI band dependent noise equivalent radiance difference levels. Drawing on this, we call on the USGS to plan an annual night-time acquisition of urban and gas flares areas globally, and to enable the performance of the future Landsat 10 to be established in a way that it will be sensitive enough to image the Earth at night, thus performing as Nightsat during the night.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1452
Permanent link to this record
 

 
Author Campaign to Protect Rural England
Title Night Blight: Mapping England’s light pollution and dark skies Type Report
Year 2016 Publication Abbreviated Journal
Volume Issue (up) Pages
Keywords Skyglow; Remote Sensing; Artificial light at night; United Kingdom; Great Britain
Abstract We can now present the most accurate ever picture of how much light is spilling up into Britain’s night skies. Detailed interactive maps have been created for England

showing districts, counties, National Parks and Areas of Outstanding Natural Beauty (AONBs) and, at a wider scale, National Character Areas. Besides these, there are high-level maps available for Scotland and Wales, so that we can now

present the most accurate ever picture of how much light is spilling up into Britain’s night sky.
Address Campaign to Protect Rural England, 5-11 Lavington Street, London SE1 0NZ, United Kingdom; info(at)cpre.org.uk
Corporate Author Thesis
Publisher Campaign to Protect Rural England Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1468
Permanent link to this record
 

 
Author Chen, H.; Sun, C.; Chen, X.; Chiang, K.; Xiong, X.
Title On-orbit calibration and performance of S-NPP VIIRS DNB Type Conference Article
Year 2016 Publication Proc. SPIE 9881, Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV, 98812B (May 2, 2016) Abbreviated Journal Proc. SPIE 9881
Volume Issue (up) Pages
Keywords Remote Sensing; VIIRS, Suomi; VIIRS DNB; day-night band; calibration; Land Science Investigator-led Processing Systems; SIPS; Orbital dynamics; Sensors; Stray light; Contamination; Diffusers; Earth sciences; Equipment and services
Abstract The S-NPP VIIRS instrument has successfully operated since its launch in October 2011. The VIIRS Day-Night Band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 μm that is capable of observing Earth scenes during both day and nighttime orbits at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low, mid, or high gain stages, and it uses an onboard solar diffuser (SD) for its low gain stage calibration. The SD observations also provide a means to compute gain ratios of low-to-mid and mid-to-high gain stages. This paper describes the DNB on-orbit calibration methodologies used by the VIIRS Characterization Support Team (VCST) in supporting the NASA earth science community with consistent VIIRS sensor data records (SDRs) made available by the Land Science Investigator-led Processing Systems (SIPS). It provides an assessment and update of DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, stray light contamination and its correction. Also presented in this paper are performance validations based on earth scenes and lunar observations.
Address Science Systems and Applications, Inc.
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1473
Permanent link to this record
 

 
Author Weidmann, N.; Schutte, S.
Title Using night light emissions for the prediction of local wealth Type Journal Article
Year 2016 Publication Journal of Peace Research Abbreviated Journal J Peace Res
Volume Issue (up) Pages 0022343316630359
Keywords Economics; remote sensing; night lights; spatial prediction
Abstract Nighttime illumination can serve as a proxy for economic variables in particular in developing countries, where data are often not available or of poor quality. Existing research has demonstrated this for coarse levels of analytical resolution, such as countries, administrative units or large grid cells. In this article, we conduct the first fine-grained analysis of night lights and wealth in developing countries. The use of large-scale, geo-referenced data from the Demographic and Health Surveys allows us to cover 39 less developed, mostly non-democratic countries with a total sample of more than 34,000 observations at the level of villages or neighborhoods. We show that light emissions are highly accurate predictors of economic wealth estimates even with simple statistical models, both when predicting new locations in a known country and when generating predictions for previously unobserved countries.
Address Department of Politics and Public Administration, University of Konstanz, Germany; nils.weidmann(at)uni-konstanz.de
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1474
Permanent link to this record
 

 
Author Allik, T.; Ramboyong, L.; Roberts, M.; Walters, M.; Soyka, T.; Dixon, R.; Cho, J.
Title Enhanced oil spill detection sensors in low-light environments Type Conference Article
Year 2016 Publication Proc. SPIE 9827, Ocean Sensing and Monitoring VIII, 98270B (May 17, 2016) Abbreviated Journal Proc. SPIE 9827
Volume Issue (up) Pages
Keywords Instrumentation; Sensors; Cameras; Long wavelength infrared; Short wave infrared radiation; Spectroscopy; Calibration; Remote sensing; Water; Near infrared; Night vision
Abstract Although advances have been made in oil spill remote detection, many electro-optic sensors do not provide real-time images, do not work well under degraded visual environments, nor provide a measure of extreme oil thickness in marine environments. A joint program now exists between BSEE and NVESD that addresses these capability gaps in remote sensing of oil spills. Laboratory experiments, calibration techniques, and field tests were performed at Fort Belvoir, Virginia; Santa Barbara, California; and the Ohmsett Test Facility in Leonardo, New Jersey. Weathered crude oils were studied spectroscopically and characterized with LWIR, and low-light-level visible/NIR, and SWIR cameras. We designed and fabricated an oil emulsion thickness calibration cell for spectroscopic analysis and ground truth, field measurements. Digital night vision cameras provided real-time, wide-dynamic-range imagery, and were able to detect and recognize oil from full sun to partial moon light. The LWIR camera provided quantitative oil analysis (identification) for >1 mm thick crude oils both day and night. Two filtered, co-registered, SWIR cameras were used to determine whether oil thickness could be measured in real time. Spectroscopic results revealed that oil emulsions vary with location and weathered state and some oils (e.g., ANS and Santa Barbara seeps) do not show the spectral rich features from archived Deep Water Horizon hyperspectral data. Multi-sensor imagery collected during the 2015 USCG Airborne Oil Spill Remote Sensing and Reporting Exercise and the design of a compact, multiband imager are discussed.
Address Active EO Inc.
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1475
Permanent link to this record