toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bowne, D.R.; Cosentino, B.J.; Anderson, L.J.; Bloch, C.P.; Cooke, S.; Crumrine, P.W.; Dallas, J.; Doran, A.; Dosch, J.J.; Druckenbrod, D.L.; Durtsche, R.D.; Garneau, D.; Genet, K.S.; Fredericksen, T.S.; Kish, P.A.; Kolozsvary, M.B.; Kuserk, F.T.; Lindquist, E.S.; Mankiewicz, C.; March, J.G.; Muir, T.J.; Murray, K.G.; Santulli, M.N.; Sicignano, F.J.; Smallwood, P.D.; Urban, R.A.; Winnett-Murray, K.; Zimmermann, C.R. url  doi
openurl 
  Title Effects of urbanization on the population structure of freshwater turtles across the United States Type Journal Article
  Year 2018 Publication Conservation Biology : the Journal of the Society for Conservation Biology Abbreviated Journal Conserv Biol  
  Volume 32 Issue 5 Pages 1150-1161  
  Keywords (up) Animals; Remote Sensing  
  Abstract Landscape-scale alterations that accompany urbanization may negatively affect the population structure of wildlife species such as freshwater turtles. Changes to nesting sites and higher mortality rates due to vehicular collisions and increased predator populations may particularly affect immature turtles and mature female turtles. We hypothesized that the proportions of adult female and immature turtles in a population will negatively correlate with landscape urbanization. As a collaborative effort of the Ecological Research as Education Network (EREN), we sampled freshwater turtle populations in 11 states across the central and eastern United States. Contrary to expectations, we found a significant positive relationship between proportions of mature female painted turtles (Chrysemys picta) and urbanization. We did not detect a relationship between urbanization and proportions of immature turtles. Urbanization may alter the thermal environment of nesting sites such that more females are produced as urbanization increases. Our approach of creating a collaborative network of scientists and students at undergraduate institutions proved valuable in terms of testing our hypothesis over a large spatial scale while also allowing students to gain hands-on experience in conservation science. This article is protected by copyright. All rights reserved.  
  Address Department of Biology, Rogers State University, 1701 W. Will Rogers Boulevard, Claremore, OK 74017, U.S.A  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-8892 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29781169 Approved no  
  Call Number GFZ @ kyba @ Serial 1920  
Permanent link to this record
 

 
Author Pauwels, J.; Le Viol, I.; Azam, C.; Valet, N.; Julien, J.-F.; Bas, Y.; Lemarchand, C.; Sanchez de Miguel, A.; Kerbiriou, C. url  doi
openurl 
  Title Accounting for artificial light impact on bat activity for a biodiversity-friendly urban planning Type Journal Article
  Year 2019 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning  
  Volume 183 Issue Pages 12-25  
  Keywords (up) Animals; Remote Sensing  
  Abstract Light pollution constitutes a major threat to biodiversity by decreasing habitat quality and landscape connectivity for nocturnal species. While there is an increasing consideration of biodiversity in urban management policies, the impact of artificial light is poorly accounted for. This is in a large part due to the lack of quantitative information and relevant guidelines to limit its negative effects. Here we compared the potential of two sources of information on light pollution, remote sensing (nocturnal picture taken from the International Space Station ISS) and ground-based (location of streetlights) data, to measure its impact on bats. Our aims were to (i) evaluate how light pollution affected Pipistrellus pipistrellus activity at the city scale, (ii) determine which source of information was the most relevant to measure light pollution’s effect and (iii) define a reproducible methodology applicable in land management to account for biodiversity in lighting planning. We used citizen science data to model the activity of P. pipistrellus, a species considered light tolerant, within three cities of France while accounting for artificial light through a variable based on either source of information. We showed that at the city scale, P. pipistrellus activity is negatively impacted by light pollution irrespective of the light variable used. This detrimental effect was better described by variables based on ISS pictures than on streetlights location. Our methodology can be easily reproduced and used in urban planning to help take the impact of light pollution into consideration and promote a biodiversity-friendly management of artificial light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2118  
Permanent link to this record
 

 
Author Young, L. C., VanderWerf, E. A., McKown M., Roberts, P., Schlueter, J., Vorsino, A., & Sischo, D. doi  openurl
  Title Evidence of Newell’s Shearwaters and Hawaiian Petrels on Oahu, Hawaii Type Journal Article
  Year 2019 Publication The Condor: Ornithological Applications Abbreviated Journal Condor  
  Volume 121 Issue 1 Pages 1-7  
  Keywords (up) Animals; Remote Sensing  
  Abstract Hawaii’s only 2 endemic seabirds, Newell’s Shearwater (Puffinus auricularis newelli) and Hawaiian Petrel (Pterodroma sandwichensis), are listed under the United States Endangered Species Act. Threats to both species include light attraction and fallout, collisions with power lines and other structures, predation by invasive animals, and habitat degradation. Both species were assumed to be extirpated from the island of Oahu despite limited survey effort. We used survey data from Kauai (both species) and Maui (Hawaiian Petrel only) to model suitable habitat and light conditions. We then projected this model onto Oahu to identify potential survey sites. From April to September of 2016–2017, we deployed automated acoustic recording units at 13 potentially suitable sites across Oahu. We detected Newell’s Shearwaters at 2 sites; one on the leeward slopes of Mount Kaala in the Waianae Mountains and another at Poamoho in the Koolau Mountains. We detected Hawaiian Petrels at one location on the windward slope of Mount Kaala. All 3 sites were in nearly intact native forest with steep slopes. The frequency of detections at these sites suggests that both species are regularly prospecting on Oahu and potentially could be breeding there. If they are breeding, these individuals could represent missing links in the population connectivity of both species among islands. Protecting any remnant breeding populations would be of high conservation value given their recent population declines.  
  Address Pacific Rim Conservation, Honolulu, Hawaii, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2308  
Permanent link to this record
 

 
Author Mendes, C.P.; Carreira, D.; Pedrosa, F.; Beca, G.; Lautenschlager, L.; Akkawi, P.; Bercê, W.; Ferraz, K.M.P.M.B.; Galetti, M. url  doi
openurl 
  Title Landscape of human fear in Neotropical rainforest mammals Type Journal Article
  Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume in press Issue Pages 108257  
  Keywords (up) Animals; Remote Sensing; rainforest; Ecology  
  Abstract The landscape of fear has profound effects on the species behavior, with most organisms engaging in risk avoidance behaviors in areas perceived as riskier. Most risk avoidance behaviors, such as temporal avoidance, have severe trade-offs between foraging efficiency and risk reduction. Human activities are able to affect the species landscape of fear, by increasing mortality of individuals (i.e. hunting, roadkill) and by disruption of the clues used by the species to estimate predation risk (e.g. light pollution). In this study, we used an extensive camera-trapping and night-time light satellite imagery to evaluate whether human activities affect the diel activity patterns of 17 species of rainforest dwelling mammals. We found evidence of diel activity shifts in eight of 17 analyzed species, in which five species become 21.6 % more nocturnal and three species become 11.7% more diurnal in high disturbed areas. This activity shifts were observed for both diurnal and nocturnal species. Persecuted species (game and predators) were more susceptible to present activity shifts. Since changes in foraging activity may affect species fitness, the behavior of humans’ avoidance may be another driver of the Anthropocene defaunation.  
  Address Laboratório de Biologia da Conservação – LABIC, Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, Avenida 24A, 1515, 13506-900, Rio Claro, São Paulo, Brazil; calebepm3(at)hotmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2743  
Permanent link to this record
 

 
Author Schirmer, A.E.; Gallemore, C.; Liu, T.; Magle, S.; DiNello, E.; Ahmed, H.; Gilday, T. url  doi
openurl 
  Title Mapping behaviorally relevant light pollution levels to improve urban habitat planning Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 1-13  
  Keywords (up) Animals; Remote Sensing; Society; remote sensing; cities; Urban planning; urban wildlife; urban ecology  
  Abstract Artificial nighttime lights have important behavioral and ecological effects on wildlife. Combining laboratory and field techniques, we identified behaviorally relevant levels of nighttime light and mapped the extent of these light levels across the city of Chicago. We began by applying a Gaussian finite mixture model to 998 sampled illumination levels around Chicago to identify clusters of light levels. A simplified sample of these levels was replicated in the laboratory to identify light levels at which C57BL/6J mice exhibited altered circadian activity patterns. We then used camera trap and high-altitude photographic data to compare our field and laboratory observations, finding activity pattern changes in the field consistent with laboratory observations. Using these results, we mapped areas across Chicago exposed to estimated illumination levels above the value associated with statistically significant behavioral changes. Based on this measure, we found that as much as 36% of the greenspace in the city is in areas illuminated at levels greater than or equal to those at which we observe behavioral differences in the field and in the laboratory. Our findings provide evidence that artificial lighting patterns may influence wildlife behavior at a broad scale throughout urban areas, and should be considered in urban habitat planning.  
  Address Northeastern Illinois University, Dept. of Biology, 5500 St. Louis Ave., Chicago, IL, 60625, USA; a-schirmer(at) neiu.edu)  
  Corporate Author Thesis  
  Publisher Nature Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2615  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: