|   | 
Details
   web
Records
Author Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K.
Title Census from Heaven: An estimate of the global human population using night-time satellite imagery Type Journal Article
Year 2001 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 22 Issue 16 Pages 3061-3076
Keywords light at night; DMSP-OLS; remote sensing; satellite
Abstract Night-time satellite imagery provided by the Defense Meteorological Satellite Program's Operational Linescan System (DMSP OLS) is evaluated as a means of estimating the population of all the cities of the world based on their areal extent in the image. A global night-time image product was registered to a dataset of 2000 known city locations with known populations. A relationship between areal extent and city population discovered by Tobler and Nordbeck is identified on a nation by nation basis to estimate the population of the 22 920 urban clusters that exist in the night-time satellite image. The relationship between city population and city areal extent was derived from 1597 city point locations with known population that landed in a 'lit' area of the image. Due to conurbation, these 1597 cities resulted in only 1383 points of analysis for performing regression. When several cities fell into one 'lit' area their populations were summed. The results of this analysis allow for an estimate of the urban population of every nation of the world. By using the known percent of population in urban areas for every nation a total national population was also estimated. The sum of these estimates is a total estimate of the global human population, which in this case was 6.3 billion. This is fairly close to the generally accepted contemporaneous (1997) estimate of the global population which stood at approximately 5.9 billion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 234
Permanent link to this record
 

 
Author Levin, N.; Johansen, K.; Hacker, J.M.; Phinn, S.
Title A new source for high spatial resolution night time images -- The EROS-B commercial satellite Type Journal Article
Year 2014 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 149 Issue Pages 1-12
Keywords Night lights; EROS-B; Land cover; Land use; Fine spatial resolution; remote sensing; satellite; light at night
Abstract City lights present one of humankind's most unique footprints on Earth as seen from space. Resulting light pollution from artificial lights obscures the night sky for astronomy and has negative impacts on biodiversity as well as on human health. However, remote sensing studies of night lights to date have been mostly limited to coarse spatial resolution sensors such as the DMSP-OLS. Here we present a new source for high spatial resolution mapping of night lights from space, derived from a commercial satellite. We tasked the Israeli EROS-B satellite to acquire two night-time light images (at a spatial resolution of 1 m) of Brisbane, Australia, and analyzed their radiometric quality and content with respect to land cover and land use. The spatial distribution of night lights as imaged by EROS-B corresponded with night-time images acquired by an airborne camera, although EROS-B was not as sensitive to low light levels. Using land cover and land use data at the statistical local area level, we could statistically explain 89% of the variability in night-time lights. Arterial roads and commercial and service areas were found to be some of the brightest land use types. Overall, we found that EROS-B imagery provides fine spatial resolution images of night lights, opening new avenues for studying light pollution in cities worldwide.
Address Department of Geography, The Hebrew University of Jerusalem, Mt. Scopus, Jerusalem 91905, Israel.
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 307
Permanent link to this record
 

 
Author Huang, Q.; He, C.; Gao, B.; Yang, Y.; Liu, Z.; Zhao, Y.; Dou, Y.
Title Detecting the 20 year city-size dynamics in China with a rank clock approach and DMSP/OLS nighttime data Type Journal Article
Year 2015 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 137 Issue Pages 138-148
Keywords remote sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1104
Permanent link to this record
 

 
Author de Miguel, A.S.; Castano, J.G.; Zamorano, J.; Pascual, S.; Angeles, M.; Cayuela, L.; Martinez, G.M.; Challupner, P.; Kyba, C.C.M.
Title Atlas of astronaut photos of Earth at night Type Journal Article
Year 2014 Publication Astronomy & Geophysics Abbreviated Journal Astronomy & Geophysics
Volume 55 Issue 4 Pages 4.36-4.36
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1366-8781 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 482
Permanent link to this record
 

 
Author Min, B.; Gaba, K.M.; Sarr, O.F.; Agalassou, A.
Title Detection of rural electrification in Africa using DMSP-OLS night lights imagery Type Journal Article
Year 2013 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 34 Issue 22 Pages 8118-8141
Keywords Remote Sensing
Abstract We report on the first systematic ground-based validation of the US Air Force Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) night lights imagery to detect rural electrification in the developing world. Drawing upon a unique survey of villages in Senegal and Mali, this study compares night-time light output from the DMSP-OLS against ground-based survey data on electricity use in 232 electrified villages and additional administrative data on 899 unelectrified villages. The analysis reveals that electrified villages are consistently brighter than unelectrified villages across annual composites, monthly composites, and a time series of nightly imagery. Electrified villages appear brighter because of the presence of streetlights, and brighter villages tend to have more streetlights. By contrast, the correlation of light output with household electricity use and access is low. We further demonstrate that a detection algorithm using data on night-time light output and the geographic location of settlements can accurately classify electrified villages. This research highlights the potential to use night lights imagery for the planning and monitoring of ongoing efforts to connect the 1.4 billion people who lack electricity around the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 484
Permanent link to this record