toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tuttle, B. T., Anderson, S. J., Sutton, P. C., Elvidge, C. D., & Baugh, K. url  doi
openurl 
  Title It Used To Be Dark Here Type Journal Article
  Year 2013 Publication (up) American Society for Photogrammetry and Remote Sensing Abbreviated Journal  
  Volume 3 Issue 11 Pages 287-297  
  Keywords Remote Sensing  
  Abstract Nighttime satellite imagery from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to observe nocturnal light emissions from sources including cities, wild fires, and gas flares. Data from the DMSP OLS is used in a wide range of studies including mapping urban areas, estimating informal economies, and estimations of population. Given the extensive and increasing list of applications a repeatable method for assessing geolocation accuracy would be beneficial. An array of portable lights was designed and taken to multiple field sites known to have no other light sources. The lights were operated during nighttime overpasses by the DMSP OLS and observed in the imagery. An assessment of the geolocation accuracy was performed by measuring the distance between the GPS measured location of the lights and the observed location in the imagery. A systematic shift was observed and the mean distance was measured at 2.9 km.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2520  
Permanent link to this record
 

 
Author Hu, T.; Huang, X. url  doi
openurl 
  Title A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data Type Journal Article
  Year 2019 Publication (up) Applied Energy Abbreviated Journal Applied Energy  
  Volume 240 Issue Pages 778-792  
  Keywords Remote Sensing  
  Abstract Timely and reliable estimation of electricity power consumption (EPC) is essential to the rational deployment of electricity power resources. Nighttime stable light (NSL) data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) have the potential to model global 1-km gridded EPC. A processing chain to estimate EPC includes: (1) NSL data correction; and (2) regression model between EPC statistics and NSL data. For the global gridded EPC estimation, the current approach is to correct the global NSL image in a uniform manner and establish the linear relationships between NSL and EPC. However, the impacts of local socioeconomic inconsistencies on the NSL correction and model establishment are not fully considered. Therefore, in this paper, we propose a novel locally adaptive method for global EPC estimation. Firstly, we set up two options (with or without the correction) for each local area considering the global NSL image is not saturated everywhere. Secondly, three directions (forward, backward, or average) are alternatives for the inter-annual correction to remove the discontinuity effect of NSL data. Thirdly, four optional models (linear, logarithmic, exponential, or second-order polynomial) are adopted for the EPC estimation of each local area with different socioeconomic dynamic. Finally, the options for each step constitute all candidate processing chains, from which the optimal one is adaptively chosen for each local area based on the coefficient of determination. The results demonstrate that our product outperforms the existing one, at global, continental, and national scales. Particularly, the proportion of countries/districts with a high accuracy (MARE (mean of the absolute relative error)  ≤ 10%) increases from 17.8% to 57.8% and the percentage of countries/districts with inaccurate results (MARE > 50%) decreases sharply from 23.0% to 3.7%. This product can enhance the detailed understanding of the spatiotemporal dynamics of global EPC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-2619 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2242  
Permanent link to this record
 

 
Author Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. url  doi
openurl 
  Title Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data Type Journal Article
  Year 2016 Publication (up) Applied Energy Abbreviated Journal Applied Energy  
  Volume 184 Issue Pages 450-463  
  Keywords Remote Sensing  
  Abstract The rapid development of global industrialization and urbanization has resulted in a great deal of electric power consumption (EPC), which is closely related to economic growth, carbon emissions, and the long-term stability of global climate. This study attempts to detect spatiotemporal dynamics of global EPC using the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime stable light (NSL) data. The global NSL data from 1992 to 2013 were intercalibrated via a modified invariant region (MIR) method. The global EPC at 1 km resolution was then modeled using the intercalibrated NSL data to assess spatiotemporal dynamics of EPC from a global scale down to continental and national scales. The results showed that the MIR method not only reduced the saturated lighted pixels, but also improved the continuity and comparability of the NSL data. An accuracy assessment was undertaken and confined that the intercalibrated NSL data were relatively suitable and accurate for estimating EPC in the world. Spatiotemporal variations of EPC were mainly identified in Europe, North America, and Asia. Special attention should be paid to China where the high grade and high-growth type of EPC covered 0.409% and 1.041% of the total country area during the study period, respectively. The results of this study greatly enhance the understanding of spatiotemporal dynamics of global EPC at the multiple scales. They will provide a scientific evidence base for tracking spatiotemporal dynamics of global EPC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-2619 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2486  
Permanent link to this record
 

 
Author Lu, H.; Liu, G. url  doi
openurl 
  Title Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting Type Journal Article
  Year 2014 Publication (up) Applied Energy Abbreviated Journal Applied Energy  
  Volume 131 Issue Pages 297-306  
  Keywords Remote Sensing  
  Abstract As the world’s largest developing country and greenhouse gas emitter, China’s residential energy consumption (REC) is now responsible for over 11% of the country’s total energy consumption. In this paper, we present a novel method that utilizes spatially distributed information from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP–OLS) and human activity index (HAI) to test the hypothesis that counties with similar carbon dioxide emissions from REC are more spatially clustered than would be expected by chance. Our results revealed a high degree of county-level clustering in the distribution of emissions per capita. However, further analysis showed that high-emission counties tended to be surrounded by counties with relatively low per capita GDP levels. Therefore, our results contrasted with other evidence that REC emissions were closely related to GDP levels. Accordingly, we stress the need for the consideration of other factors in determining emission patterns, such as residential consumption patterns (e.g., consumer choices, behavior, knowledge, and information diffusion).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-2619 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2493  
Permanent link to this record
 

 
Author Zhou, N.; Hubacek, K.; Roberts, M. url  doi
openurl 
  Title Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data Type Journal Article
  Year 2015 Publication (up) Applied Geography Abbreviated Journal Applied Geography  
  Volume 63 Issue Pages 292-303  
  Keywords Remote Sensing; Economics; Asia; South Asia; DMSP-OLS; Nighttime Lights; urban; Economic Development; India; Pakistan; Sri Lanka; Nepal; Bangladesh; GIS  
  Abstract Over the last quarter of a century, analyzing the pace of urbanization and urban economic growth in South Asia has become increasingly important. However, a key challenge relates to the absence of spatially disaggregated national accounts data – in particular, the absence of GDP data for sub-national administrative units and individual cities. The absence of such data limits the scope for detailed empirical analysis of spatial patterns of economic growth, particularly across individual urban settlements or cities. This paper aims to test the suitability of DMSP-OLS Nighttime Lights (NTL) data as a proxy for GDP to analyze detailed spatial patterns of urban economic growth across South Asia over the period 1999–2010. It will help to build an understanding of the nature and heterogeneity of spatial patterns of urban economic growth within the region and contribute to the development of a framework for the usage of NTL to investigate such patterns. Geographic Information System (GIS) is employed to identify the cities and urban agglomerations together with their NTL data in South Asia, and spatial statistics are used to analyze the spatial and temporal patterns of NTL growth. This paper adopts descriptive and inferential statistics to determine the quantitative relationship between NTL and population, urban size, and proximity to the coast. This paper reveals that the inter-annually calibrated NTL data is a good proxy for changes in national and sub-national GDP. In South Asia, the urban NTL hot spots are around major cities with populations between 1.3 and 2.6 million in 1999 and 0.5 to 1.3 million in 2010. Cities in the region have also become more clustered and connected forming urban agglomerations. NTL per unit of land in such clusters tends to be higher than in single cities in South Asia. India, Pakistan, and Sri Lanka tend to have higher NTL (economic) growth on average, while Nepal and Bangladesh have lower growth or declining NTL. There exists a very strong positive linear relation between distance to the coast and the total NTL within that distance, which leads to similar NTL growth rates among inland and coastal cities.  
  Address Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-6228 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1240  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: