|   | 
Details
   web
Records
Author Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Taubenbock, H.; Baud, I.; van Maarseveen, M.
Title (up) Capturing the Urban Divide in Nighttime Light Images From the International Space Station Type Journal Article
Year 2018 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing
Volume 11 Issue 8 Pages 2578-2586
Keywords Remote Sensing
Abstract Earlier studies utilizing coarse resolution DMSP-OLS nighttime light (NTL) imagery suggest a negative correlation between the amount of NTL and urban deprivation. The International Space Station (ISS) NTL images offer higher resolution images compared to DMSP-OLS or VIIRS images, allowing an analysis of intraurban NTL variations. The aim of this study is to examine the capacity of ISS images for analyzing the intraurban divide. NTL images of four cities (one African, two Asian, and one South American) have been processed and analyzed. The results show that deprived areas are generally the darker spots of built-up areas within cities, illustrating the urban divide in terms of access to street lighting. However, differences exist between cities: Deprived areas in the African city (Dar es Salaam) generally feature lower NTL emissions compared to the examined cities in South America (Belo Horizonte) and Asia (Mumbai and Ahmedabad). Beyond, variations exist in NTL emissions across deprived areas within cities. Deprived areas at the periphery show less NTL compared to central areas. Edges of deprived areas have higher NTL emissions compared to internal areas. NTL emission differences between types of deprived areas were detected. The correlation between ISS NTL images and population densities is weak; this can be explained by densely built-up deprived areas having less NTL compared to lower density formal areas. Our findings show ISS data complement other data to capture the urban divide between deprived and better-off areas and the need to consider socioeconomic conditions in estimating populations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-1404 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2178
Permanent link to this record
 

 
Author Faraji, H.; MacLean, W.J.
Title (up) CCD noise removal in digital images Type Journal Article
Year 2006 Publication IEEE Transactions on Image Processing Abbreviated Journal IEEE Trans. on Image Process.
Volume 15 Issue 9 Pages 2676-2685
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 935
Permanent link to this record
 

 
Author Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K.
Title (up) Census from Heaven: An estimate of the global human population using night-time satellite imagery Type Journal Article
Year 2001 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 22 Issue 16 Pages 3061-3076
Keywords light at night; DMSP-OLS; remote sensing; satellite
Abstract Night-time satellite imagery provided by the Defense Meteorological Satellite Program's Operational Linescan System (DMSP OLS) is evaluated as a means of estimating the population of all the cities of the world based on their areal extent in the image. A global night-time image product was registered to a dataset of 2000 known city locations with known populations. A relationship between areal extent and city population discovered by Tobler and Nordbeck is identified on a nation by nation basis to estimate the population of the 22 920 urban clusters that exist in the night-time satellite image. The relationship between city population and city areal extent was derived from 1597 city point locations with known population that landed in a 'lit' area of the image. Due to conurbation, these 1597 cities resulted in only 1383 points of analysis for performing regression. When several cities fell into one 'lit' area their populations were summed. The results of this analysis allow for an estimate of the urban population of every nation of the world. By using the known percent of population in urban areas for every nation a total national population was also estimated. The sum of these estimates is a total estimate of the global human population, which in this case was 6.3 billion. This is fairly close to the generally accepted contemporaneous (1997) estimate of the global population which stood at approximately 5.9 billion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 234
Permanent link to this record
 

 
Author Elvidge, C. D.; Sutton, P. C.; Turtle, B. T.; Baugh, K. E.; Howard, A. T.; Erwin, E. H.
Title (up) Change Detection in Satellite Observed Nighttime Lights: 1992-2003 Type Journal Article
Year 2007 Publication In Urban Remote Sensing Joint Event, 2007 Abbreviated Journal
Volume Issue Pages 1-4
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 933
Permanent link to this record
 

 
Author Xiang, W.; Tan, M.
Title (up) Changes in Light Pollution and the Causing Factors in China's Protected Areas, 1992-2012 Type Journal Article
Year 2017 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 9 Issue 10 Pages 1026
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1752
Permanent link to this record