|   | 
Details
   web
Records
Author Sutton, P.C.
Title A scale-adjusted measure of “Urban sprawl” using nighttime satellite imagery Type (up) Journal Article
Year 2003 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 86 Issue 3 Pages 353-369
Keywords Urban sprawl; Sprawl Line; Nighttime satellite imagery; DMSP-OLS; remote sensing; satellite; llight at night
Abstract “Urban Sprawl” is a growing concern of citizens, environmental organizations, and governments. Negative impacts often attributed to urban sprawl are traffic congestion, loss of open space, and increased pollutant runoff into natural waterways. Definitions of “Urban Sprawl” range from local patterns of land use and development to aggregate measures of per capita land consumption for given contiguous urban areas (UA). This research creates a measure of per capita land use consumption as an aggregate index for the spatially contiguous urban areas of the conterminous United States with population of 50,000 or greater. Nighttime satellite imagery obtained by the Defense Meteorological Satellite Program's Operational Linescan System (DMSP OLS) is used as a proxy measure of urban extent. The corresponding population of these urban areas is derived from a grid of the block group level data from the 1990 U.S. Census. These numbers are used to develop a regression equation between Ln(Urban Area) and Ln(Urban Population). The ‘scale-adjustment’ mentioned in the title characterizes the “Urban Sprawl” of each of the urban areas by how far above or below they are on the “Sprawl Line” determined by this regression. This “Sprawl Line” allows for a more fair comparison of “Urban Sprawl” between larger and smaller metropolitan areas because a simple measure of per capita land consumption or population density does not account for the natural increase in aggregate population density that occurs as cities grow in population. Cities that have more “Urban Sprawl” by this measure tended to be inland and Midwestern cities such as Minneapolis–St. Paul, Atlanta, Dallas–Ft. Worth, St. Louis, and Kansas City. Surprisingly, west coast cities including Los Angeles had some of the lowest levels of “Urban Sprawl” by this measure. There were many low light levels seen in the nighttime imagery around these major urban areas that were not included in either of the two definitions of urban extent used in this study. These areas may represent a growing commuter-shed of urban workers who do not live in the urban core but nonetheless contribute to many of the impacts typically attributed to “Urban Sprawl”. “Urban Sprawl” is difficult to define precisely partly because public perception of sprawl is likely derived from local land use planning decisions, spatio-demographic change in growing urban areas, and changing values and social mores resulting from differential rates of international migration to the urban areas of the United States. Nonetheless, the aggregate measures derived here are somewhat different than similar previously used measures in that they are ‘scale-adjusted’; also, the spatial patterns of “Urban Sprawl” shown here shed some insight and raise interesting questions about how the dynamics of “Urban Sprawl” are changing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 233
Permanent link to this record
 

 
Author Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K.
Title Census from Heaven: An estimate of the global human population using night-time satellite imagery Type (up) Journal Article
Year 2001 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 22 Issue 16 Pages 3061-3076
Keywords light at night; DMSP-OLS; remote sensing; satellite
Abstract Night-time satellite imagery provided by the Defense Meteorological Satellite Program's Operational Linescan System (DMSP OLS) is evaluated as a means of estimating the population of all the cities of the world based on their areal extent in the image. A global night-time image product was registered to a dataset of 2000 known city locations with known populations. A relationship between areal extent and city population discovered by Tobler and Nordbeck is identified on a nation by nation basis to estimate the population of the 22 920 urban clusters that exist in the night-time satellite image. The relationship between city population and city areal extent was derived from 1597 city point locations with known population that landed in a 'lit' area of the image. Due to conurbation, these 1597 cities resulted in only 1383 points of analysis for performing regression. When several cities fell into one 'lit' area their populations were summed. The results of this analysis allow for an estimate of the urban population of every nation of the world. By using the known percent of population in urban areas for every nation a total national population was also estimated. The sum of these estimates is a total estimate of the global human population, which in this case was 6.3 billion. This is fairly close to the generally accepted contemporaneous (1997) estimate of the global population which stood at approximately 5.9 billion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 234
Permanent link to this record
 

 
Author Duriscoe, D.M.; Luginbuhl, C.B.; Elvidge, C.D.
Title The relation of outdoor lighting characteristics to sky glow from distant cities Type (up) Journal Article
Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 46 Issue 1 Pages 35-49
Keywords measurements; light pollution; light at night; Suomi NPP; satellite; remote sensing; VIIRS
Abstract Five cities in the southwest United States were selected for an analysis of the impact of outdoor lighting practices on nighttime sky glow as observed from distances of 8–67 km. Data from the Suomi National Polar-orbiting Partnership (NPP) satellite visible infrared imaging radiometer suite day/night band were used to identify light sources for input to an atmospheric sky glow model. Total lumens of outdoor lighting were estimated by matching modelled to observed anthropogenic sky luminance at ground locations. The results of two conservative treatments were then modelled for each city: all outdoor luminaires fully shielded with the current lumen amount, and fully shielded luminaires with a lumen amount scaled to 2075 lm/capita, matching Flagstaff, Arizona. The results indicate 42–88% reductions in average all-sky glow utilizing these ‘best practices’ for environmental conservation.
Address U.S. National Park Service Night Skies Program, Bishop, CA, USA
Corporate Author Thesis
Publisher Sage Place of Publication Editor
Language Engligh Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 268
Permanent link to this record
 

 
Author Levin, N.; Johansen, K.; Hacker, J.M.; Phinn, S.
Title A new source for high spatial resolution night time images -- The EROS-B commercial satellite Type (up) Journal Article
Year 2014 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 149 Issue Pages 1-12
Keywords Night lights; EROS-B; Land cover; Land use; Fine spatial resolution; remote sensing; satellite; light at night
Abstract City lights present one of humankind's most unique footprints on Earth as seen from space. Resulting light pollution from artificial lights obscures the night sky for astronomy and has negative impacts on biodiversity as well as on human health. However, remote sensing studies of night lights to date have been mostly limited to coarse spatial resolution sensors such as the DMSP-OLS. Here we present a new source for high spatial resolution mapping of night lights from space, derived from a commercial satellite. We tasked the Israeli EROS-B satellite to acquire two night-time light images (at a spatial resolution of 1 m) of Brisbane, Australia, and analyzed their radiometric quality and content with respect to land cover and land use. The spatial distribution of night lights as imaged by EROS-B corresponded with night-time images acquired by an airborne camera, although EROS-B was not as sensitive to low light levels. Using land cover and land use data at the statistical local area level, we could statistically explain 89% of the variability in night-time lights. Arterial roads and commercial and service areas were found to be some of the brightest land use types. Overall, we found that EROS-B imagery provides fine spatial resolution images of night lights, opening new avenues for studying light pollution in cities worldwide.
Address Department of Geography, The Hebrew University of Jerusalem, Mt. Scopus, Jerusalem 91905, Israel.
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 307
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Duffy, J.P.; Inger, R.; Gaston, K.J.
Title Contrasting trends in light pollution across Europe based on satellite observed night time lights Type (up) Journal Article
Year 2014 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 4 Issue Pages 3789
Keywords remote sensing; light pollution; light at night; DMSP-OLS; satellite; light pollution reduction
Abstract Since the 1970s nighttime satellite images of the Earth from space have provided a striking illustration of the extent of artificial light. Meanwhile, growing awareness of adverse impacts of artificial light at night on scientific astronomy, human health, ecological processes and aesthetic enjoyment of the night sky has led to recognition of light pollution as a significant global environmental issue. Links between economic activity, population growth and artificial light are well documented in rapidly developing regions. Applying a novel method to analysis of satellite images of European nighttime lights over 15 years, we show that while the continental trend is towards increasing brightness, some economically developed regions show more complex patterns with large areas decreasing in observed brightness over this period. This highlights that opportunities exist to constrain and even reduce the environmental impact of artificial light pollution while delivering cost and energy-saving benefits.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK TR10 9EZ
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:24445659; PMCID:PMC3896907 Approved no
Call Number IDA @ john @ Serial 328
Permanent link to this record