|   | 
Details
   web
Records
Author Xue, X.; Lin, Y.; Zheng, Q.; Wang, K.; Zhang, J.; Deng, J.; Abubakar, G.A.; Gan, M.
Title Mapping the fine-scale spatial pattern of artificial light pollution at night in urban environments from the perspective of bird habitats Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume (down) 702 Issue Pages 134725
Keywords Remote Sensing; Animals; ALAN pollution; Circuitscape; Land cover; Nighttime light image; Urban ecology
Abstract The increase in artificial light at night (ALAN) is a global concern, while the pattern of ALAN pollution inside urban areas has not yet been fully explored. To fill this gap, we developed a novel method to map fine-scale ALAN pollution patterns in urban bird habitats using high spatial resolution ALAN satellite data. First, an ALAN pollution map was derived from JL1-3B satellite images. Then, the core habitat nodes (CHNs) representing the main habitats for urban birds to inhabit were identified from the land cover map, which was produced using Gaofen2 (GF2) data, and the high probability corridors (HPCs), indicating high connectivity paths, were derived from Circuitscape software. Finally, the ALAN patterns in the CHNs and HPCs were analysed, and the mismatch index was proposed to evaluate the trade-off between human activity ALAN demands and ALAN supply for the protection of urban birds. The results demonstrated that 115 woodland patches covering 4149.0ha were selected as CHNs, and most of the CHNs were large urban parks or scenic spots located in the urban fringe. The 2923 modelled HPCs occupying 1179.2ha were small remaining vegetation patches and vegetated corridors along the major transport arteries. The differences in the ALAN pollution patterns between CHNs and HPCs were mainly determined by the characteristics of the green space patches and the light source types. The polluted regions in the CHNs were clustered in a few regions that suffered from concentrated and intensive ALAN, while most of the CHNs remained unaffected. In contrast, the 727 HPCs were mainly polluted by street lighting was scattered and widely distributed, resulting a more varying influence to birds than that in the CHNs. Relating patterns of the ALAN to bird habitats and connectivity provides meaningful information for comprehensive planning to alleviate the disruptive effects of ALAN pollution.
Address College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. Electronic address: ganmuye@zju.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:31734607 Approved no
Call Number GFZ @ kyba @ Serial 2765
Permanent link to this record
 

 
Author Zhen, J.; Pei, T.; Xie, S.
Title Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume (down) 659 Issue Pages 363-371
Keywords Remote Sensing
Abstract The spatial distribution of potentially toxic metals (PTMs) has been shown to be related to anthropogenic activities. Several auxiliary variables, such as those related to remote sensing data (e.g. digital elevation models, land use, and enhanced vegetation index) and soil properties (e.g. pH, soil type and cation exchange capacity), have been used to predict the spatial distribution of soil PTMs. However, these variables are mostly focused on natural processes or a single aspect of anthropogenic activities and cannot reflect the effects of integrated anthropogenic activities. Nighttime lights (NTL) images, a representative variable of integrated anthropogenic activities, may have the potential to reflect PTMs distribution. To uncover this relationship and determine the effects on evaluation precision, the NTL was employed as an auxiliary variable to map the distribution of PTMs in the United Kingdom. In this study, areas with a digital number (DN)>/=50 and an area>30km(2) were extracted from NTL images to represent regions of high-frequency anthropogenic activities. Subsequently, the distance between the sampling points and the nearest extracted area was calculated. Barium, lead, zinc, copper, and nickel concentrations exhibited the highest correlation with this distance. Their concentrations were mapped using distance as an auxiliary variable through three different kriging methods, i.e., ordinary kriging (OK), cokriging (CK), and regression kriging (RK). The accuracy of the predictions was evaluated using the leave-one-out cross validation method. Regardless of the elements, CK and RK always exhibited lower mean absolute error and root mean square error, in contrast to OK. This indicates that using the NTL as the auxiliary variable indeed enhanced the prediction accuracy for the relevant PTMs. Additionally, RK showed superior results in most cases. Hence, we recommend RK for prediction of PTMs when using the NTL as the auxiliary variable.
Address State Key Laboratory of Geological Processes and Mineral Resources(GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:30599355 Approved no
Call Number GFZ @ kyba @ Serial 2494
Permanent link to this record
 

 
Author Duan, H.; Cao, Z.; Shen, M.; Liu, D.; Xiao, Q.
Title Detection of illicit sand mining and the associated environmental effects in China's fourth largest freshwater lake using daytime and nighttime satellite images Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment
Volume (down) 647 Issue Pages 606-618
Keywords Remote Sensing; Regulation
Abstract Illegal sand mining activities are rampant in coastal and inland water around the world and result in increased water turbidity, reduced water transparency, damage to fish spawning sites and adverse effects on the health of aquatic ecosystems. However, many sand dredging vessels hide during the day and work at night, rendering conventional monitoring measures ineffective. In this study, illegal sand dredging activities and the associated aquatic environmental effects were investigated in Lake Hongze (the fourth largest freshwater lake in China) using both conventional daytime satellite data, including MODIS/Aqua and Landsat TM/ETM data as well as VIIRS Day/Night Band (DNB) nighttime light (NTL) data, the following results were obtained. (1) The Landsat data revealed that sand dredging vessels first appeared in February 2012 and their number (monthly average: 658) peaked in 2016, and sand dredging stopped after March 2017. (2) The VIIRS NTL data were satisfactory for monitoring nighttime illegal dredging activities, and they more accurately reflected the temporal and spatial distribution characteristics of dredging vessels due to their high frequency. (3) Observations from the MODIS data acquired since 2002 showed three distinct stages of changes in the suspended particulate matter (SPM) concentrations of Lake Hongze that were consistent with the temporal distributions of sand dredging vessels. (4) The contribution of dredging vessels to the increases in SPM concentration was quantitatively determined, and nighttime sand dredging activities were found to have disturbed the waters more significantly. (5) The effectiveness of government measures implemented at various stages to control illegal sand dredging activities were scientifically evaluated. This study provides technological support for government monitoring and the control of illegal sand dredging activities and can serve as a valuable reference for water bodies similar to Lake Hongze worldwide. The evaluation method developed in this study could potentially be applied at a global scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1970
Permanent link to this record
 

 
Author Strobl, E.
Title The Impact of Typhoons on Economic Activity in the Philippines: Evidence from Nightlight Intensity Type Journal Article
Year 2019 Publication ADB Economics Working Paper Series Abbreviated Journal
Volume (down) 589 Issue Pages
Keywords Remote Sensing
Abstract We quantify the economic impact of typhoons in the Philippines. To this end we construct a panel data set of local economic activity derived from nightlight intensity satellite images and a cell level measure of typhoon damage constructed from storm track data, a wind field model, and a stylized damage function. Our econometric results reveal that there is a statistically and potentially economically significant, albeit short- lived, impact of typhoon destruction on local economic activity. Constructing risk profiles from a 60-year historical set of storms suggests that (near) future losses in economic activity for frequent (5-year return period) and rare (50-year return period) events are likely

to range from between 1.0% and 2.5%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2641
Permanent link to this record
 

 
Author Manoli, G.; Fatichi, S.; Schlapfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E.
Title Magnitude of urban heat islands largely explained by climate and population Type Journal Article
Year 2019 Publication Nature Abbreviated Journal Nature
Volume (down) 573 Issue 7772 Pages 55-60
Keywords Remote Sensing
Abstract Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (DeltaTs) worldwide and find a nonlinear increase in DeltaTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of DeltaTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban-rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions.
Address Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:31485056 Approved no
Call Number GFZ @ kyba @ Serial 2669
Permanent link to this record