toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DeCoursey, W., Braun, D., & Oza, J. url  openurl
  Title Pedestrian Lighting, Acceptable Levels of Light: A Pilot Project Type Journal Article
  Year 2019 Publication Institute for Public Administration Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; Public Safety; Security  
  Abstract (up) This pilot project study was intended to demonstrate that assessing the adequacy of an area’s pedestrian lighting need not be an expensive, time-consuming, or overly complicated process. Though the discussion of methods of pedestrian lighting can become quite technical and involved, as demonstrated in a 2016 IPA report on the topic, “Delaware Transportation Lighting Inventory & Assessment” (http://www.ipa.udel.edu/publications/transportationlighting-2016.pdf), simply observing and recording light levels in a given study area is quite straightforward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2710  
Permanent link to this record
 

 
Author Wanvik, P.O. url  doi
openurl 
  Title Effects of road lighting: an analysis based on Dutch accident statistics 1987-2006 Type Journal Article
  Year 2009 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev  
  Volume 41 Issue 1 Pages 123-128  
  Keywords Accidents, Traffic/*statistics & numerical data; Automobile Driving/*statistics & numerical data; Confidence Intervals; Cross-Sectional Studies; Humans; *Lighting; Netherlands; Odds Ratio; Risk Factors; Safety; *Visual Fields  
  Abstract (up) This study estimates the safety effect of road lighting on accidents in darkness on Dutch roads, using data from an interactive database containing 763,000 injury accidents and 3.3 million property damage accidents covering the period 1987-2006. Two estimators of effect are used, and the results are combined by applying techniques of meta-analysis. Injury accidents are reduced by 50%. This effect is larger than the effects found in most of the earlier studies. The effect on fatal accidents is slightly larger than the effect on injury accidents. The effect during twilight is about 2/3 of the effect in darkness. The effect of road lighting is significantly smaller during adverse weather and road surface conditions than during fine conditions. The effects on pedestrian, bicycle and moped accidents are significantly larger than the effects on automobile and motorcycle accidents. The risk of injury accidents was found to increase in darkness. The average increase in risk was estimated to 17% on lit rural roads and 145% on unlit rural roads. The average increase in risk during rainy conditions is about 50% on lit rural roads and about 190% on unlit rural roads. The average increase in risk with respect to pedestrian accidents is about 140% on lit rural roads and about 360% on unlit rural roads.  
  Address Norwegian Public Roads Administration, Region South, Serviceboks 723, 4808 Arendal, Norway. per.wanvik@vegvesen.no  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4575 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19114146 Approved no  
  Call Number IDA @ john @ Serial 250  
Permanent link to this record
 

 
Author Wood, J.M.; Tyrrell, R.A.; Carberry, T.P. url  doi
openurl 
  Title Limitations in drivers' ability to recognize pedestrians at night Type Journal Article
  Year 2005 Publication Human Factors Abbreviated Journal Hum Factors  
  Volume 47 Issue 3 Pages 644-653  
  Keywords Vision; Public Safety; Adult; Age Factors; Aged; *Automobile Driving/psychology; Clothing; *Darkness; Female; Humans; Male; Middle Aged; Reaction Time; Task Performance and Analysis; Visual Perception  
  Abstract (up) This study quantified drivers' ability to recognize pedestrians at night. Ten young and 10 older participants drove around a closed road circuit and responded when they first recognized a pedestrian. Four pedestrian clothing and two beam conditions were tested. Results demonstrate that driver age, clothing configuration, headlamp beam, and glare all significantly affect performance. Drivers recognized only 5% of pedestrians in the most challenging condition (low beams, black clothing, glare), whereas drivers recognized 100% of the pedestrians who wore retroreflective clothing configured to depict biological motion (no glare). In the absence of glare, mean recognition distances varied from 0.0 m (older drivers, low beam, black clothing) to 220 m (722 feet; younger drivers, high beam, retroreflective biomotion). These data provide new motivation to minimize interactions between vehicular and pedestrian traffic at night and suggest garment designs to maximize pedestrian conspicuity when these interactions are unavoidable.  
  Address Center for Eye Research, Queensland University of Technology, Brisbane, Australia. j.wood@qut.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-7208 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16435703 Approved no  
  Call Number GFZ @ kyba @ Serial 2804  
Permanent link to this record
 

 
Author Liu, J.; Cai, J.; Lin, S.; Zhao, J. url  doi
openurl 
  Title Analysis of Factors Affecting a Driver’s Driving Speed Selection in Low Illumination Type Journal Article
  Year 2020 Publication Journal of Advanced Transportation Abbreviated Journal Journal of Advanced Transportation  
  Volume 2020 Issue Pages Article ID 2817801  
  Keywords Public Safety  
  Abstract (up) To better understand a driver’s driving speed selection behaviour in low illumination, a self-designed questionnaire was applied to investigate driving ability in low illumination, and the influencing factors of low-illumination driving speed selection behaviour were discussed from the driver’s perspective. The reliability and validity of 243 questionnaires were tested, and multiple linear regression was used to analyse the comprehensive influence of demographic variables, driving speed in a low-illumination environment with street lights and driving ability on speed selection behaviour in low illumination without street lights. Pearson’s correlation test showed that there was no correlation among age, education, accidents in the past 3 years, and speed selection behaviour in low illumination, but gender, driving experience, number of night-driving days per week, and average annual mileage were significantly correlated with speed selection behaviour. In a low-illumination environment, driving ability has a significant influence on a driver’s speed selection behaviour. Technical driving ability under low-illumination conditions of street lights has the greatest influence on speed selection behaviour on a road with a speed limit of 120 km/h (β = 0.51). Risk perception ability has a significant negative impact on speed selection behaviour on roads with speed limits of 80 km/h and 120 km/h (β = −0.25 and β = −0.34, respectively). Driving speed in night-driving environment with street lights also has a positive influence on speed selection behaviour in low illumination (β = 0.61; β = 0.28; β = 0.37).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0197-6729 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2913  
Permanent link to this record
 

 
Author Lin, Y.; Liu, Y.; Sun, Y.; Zhu, X.; Lai, J.; Heynderickx, I. url  doi
openurl 
  Title Model predicting discomfort glare caused by LED road lights Type Journal Article
  Year 2014 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 22 Issue 15 Pages 18056  
  Keywords LED; LED lighting; glare; road safety; traffic  
  Abstract (up) To model discomfort glare from LED road lighting, the effect of four key variables on perceived glare was explored. These variables were: the average glare source luminance (Lg), the background luminance (Lb), the solid angle of the glare source from the perspective of the viewer; and the angle between the glare source and the line of sight. Based on these four variables 72 different light conditions were simulated in a scaled experimental set-up. Participants were requested to judge the perceived discomfort glare of these light conditions using the deBoer rating scale. All four variables and some of their interactions had indeed a significant effect on the deBoer rating. Based on these findings, we developed a model, and tested its general applicability in various verification experiments, including laboratory conditions as well as real road conditions. This verification proved the validity of the model with a correlation between measured and predicted values as high as 0.87 and a residual deviation of about 1 unit on the deBoer rating scale. These results filled the gap in estimating discomfort glare of LED road lighting and clarified similarities of and differences in discomfort glare between LED and traditional light sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 351  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: