|   | 
Details
   web
Records
Author (up) van Schalkwyk, I.; Venkataraman, N.; Shankar, V.; Milton, J.; Bailey, T.; Calais, K.
Title Evaluation of the Safety Performance of Continuous Mainline Roadway Lighting on Freeway Segments in Washington State Type Report
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Public Safety; traffic; traffic safety; road safety; continuous roadway lighting; Washington; United States
Abstract Washington State Department of Transportation (WSDOT) evaluated continuous roadway lighting on mainline freeway segments in Washington State. An extensive literature review on the safety performance of roadway lighting was completed. As part of this research effort WSDOT developed multivariate random parameter (RP) models with specific lighting variables for continuous lighting on mainline freeway segments. Roadway lighting is often used as a countermeasure to address nighttime crashes and this research evaluates common assumption related to roadway lighting. The models developed for this research use crashes from the end of civil dusk twilight to the start of civil dawn twilight since lighting systems are of limited value outside these timeframes. Natural light conditions were estimated for crashes based on location and time of the crash event. Based on the RP results, the research team concludes that the contribution of continuous illumination to nighttime crash reduction is negligible. In addition to the findings on safety performance, a pilot LED project on US101 demonstrated that LED roadway lighting can significantly increase energy efficiency and environmental stewardship (e.g., reducing greenhouse gas emissions) while maintaining safety performance outcomes. The research team recommended modification to WSDOT design policy, including removal of the requirement of continuous mainline lighting and reduction of lighting where segment specific analysis indicates appropriate.
Address Washington State Department of Transportation 310 Maple Park Ave SE, Olympia, WA, USA
Corporate Author Thesis
Publisher Washington State Department of Transportation Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title WSDOT Research Report Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1427
Permanent link to this record
 

 
Author (up) Wanvik, P.O.
Title Effects of road lighting: an analysis based on Dutch accident statistics 1987-2006 Type Journal Article
Year 2009 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 41 Issue 1 Pages 123-128
Keywords Accidents, Traffic/*statistics & numerical data; Automobile Driving/*statistics & numerical data; Confidence Intervals; Cross-Sectional Studies; Humans; *Lighting; Netherlands; Odds Ratio; Risk Factors; Safety; *Visual Fields
Abstract This study estimates the safety effect of road lighting on accidents in darkness on Dutch roads, using data from an interactive database containing 763,000 injury accidents and 3.3 million property damage accidents covering the period 1987-2006. Two estimators of effect are used, and the results are combined by applying techniques of meta-analysis. Injury accidents are reduced by 50%. This effect is larger than the effects found in most of the earlier studies. The effect on fatal accidents is slightly larger than the effect on injury accidents. The effect during twilight is about 2/3 of the effect in darkness. The effect of road lighting is significantly smaller during adverse weather and road surface conditions than during fine conditions. The effects on pedestrian, bicycle and moped accidents are significantly larger than the effects on automobile and motorcycle accidents. The risk of injury accidents was found to increase in darkness. The average increase in risk was estimated to 17% on lit rural roads and 145% on unlit rural roads. The average increase in risk during rainy conditions is about 50% on lit rural roads and about 190% on unlit rural roads. The average increase in risk with respect to pedestrian accidents is about 140% on lit rural roads and about 360% on unlit rural roads.
Address Norwegian Public Roads Administration, Region South, Serviceboks 723, 4808 Arendal, Norway. per.wanvik@vegvesen.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:19114146 Approved no
Call Number IDA @ john @ Serial 250
Permanent link to this record
 

 
Author (up) Wanvik, P.O.
Title Effects of road lighting on motorways Type Journal Article
Year 2009 Publication Traffic Injury Prevention Abbreviated Journal Traffic Inj Prev
Volume 10 Issue 3 Pages 279-289
Keywords Lighting; Public Safety; Security
Abstract OBJECTIVES: The study has three objectives. The first is to investigate how the effect of road lighting on motorway accidents varies with different weather and road surface conditions. The second is to evaluate the future benefit of road lighting as a safety measure on motorways. The third is to evaluate the need for further research in the field of motorway lighting. METHOD: This article presents a cross-sectional study of the effects of road lighting on motorways mainly in The Netherlands. The main source of data is a Dutch database of accidents covering the period 1987-2006, but British and Swedish data are also used. RESULTS: The effect of road lighting on motorways is found to be greater in The Netherlands than in Great Britain or Sweden. Reasons for this are not known. Effects are found to vary according to background characteristics and are lesser during precipitation than during fine weather and on wet road surfaces than on dry surfaces. No effect of road lighting is found during fog. Collision with light poles constitutes a large number of accidents on lit motorways and reduces the safety effect of road lighting. CONCLUSIONS: The effect of road lighting on injury accidents during darkness is found to be very high (-49%) on Dutch motorways. However, the effect seems to vary between countries. Collisions with light poles reduce the effect of road lighting. Road lighting will probably be an effective safety measures on motorways for many years. In the long term, however, the benefit of road lighting will probably be reduced along with the implementation of new vehicle and road technology. Modern technology permits a continuous adaptation of luminance levels to optimize the effect of road lighting on safety while at the same time minimizing energy consumption. However, more detailed knowledge concerning the effects of road lighting at different lighting levels is needed in order to use this technology effectively. Alternative or additional measures like LED guide lights and light road surfaces also need to be evaluated.
Address Norwegian Public Roads Administration, Region South, Serviceboks 723, Arendal, Norway. per.wanvik@vegvesen.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1538-9588 ISBN Medium
Area Expedition Conference
Notes PMID:19452370 Approved no
Call Number LoNNe @ kyba @ Serial 1788
Permanent link to this record
 

 
Author (up) Wood, J.M.
Title Nighttime driving: visual, lighting and visibility challenges Type Journal Article
Year 2019 Publication Ophthalmic & Physiological Optics : the Journal of the British College of Ophthalmic Opticians (Optometrists) Abbreviated Journal Ophthalmic Physiol Opt
Volume Issue Pages in press
Keywords Review; Public Safety; headlights; nighttime driving; older drivers; pedestrians and cyclists; streetlights; visual performance
Abstract PURPOSE: Nighttime driving is dangerous and is one of the most challenging driving situations for most drivers. Fatality rates are higher at night than in the day when adjusted for distances travelled, particularly for crashes involving pedestrians and cyclists. Although there are multiple contributory factors, the low light levels at night are believed to be the major cause of collisions with pedestrians and cyclists at night, most likely due to their reduced visibility. Understanding the visibility problems involved in nighttime driving is thus critical, given the increased risk to road safety. RECENT FINDINGS: This review discusses research that highlights key differences in the nighttime road environment compared to the day and how this affects visual function and driving performance, together with an overview of studies investigating how driver age and visual status affect nighttime driving performance. Research that has focused on the visibility of vulnerable road users at nighttime (pedestrians and cyclists) is also included. SUMMARY: Collectively, the research evidence suggests that visual function is reduced under the mesopic lighting conditions of night driving and that these effects are exacerbated by increasing age and visual impairment. Light and glare from road lighting and headlights have significant impacts on vision and night driving and these effects are likely to change with evolving technologies, such as LED streetlighting and headlights. Research also highlights the importance of the visibility of vulnerable road users at night and the role of retroreflective clothing in the 'biomotion' configuration for improving their conspicuity and hence safety.
Address School of Optometry and Vision Science and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0275-5408 ISBN Medium
Area Expedition Conference
Notes PMID:31875993 Approved no
Call Number GFZ @ kyba @ Serial 2803
Permanent link to this record
 

 
Author (up) Wood, J.M.; Isoardi, G.; Black, A.; Cowling, I.
Title Night-time driving visibility associated with LED streetlight dimming Type Journal Article
Year 2018 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 121 Issue Pages 295-300
Keywords Public Safety
Abstract New LED streetlighting designs and dimming are being introduced worldwide, however, while their cost savings are well established, their impact on driving performance has received little attention. This study investigated the effect of streetlight dimming on night-time driving performance. Participants included 14 licensed drivers (mean age 34.2 +/- 4.9 years, range 27-40 years) who drove an instrumented vehicle around a closed circuit at night. Six LED streetlights were positioned along a 250 m, straight section and their light output varied between laps (dimming levels of 25%, 50%, 75% and 100% of maximum output; L25, L50, L75 and L100 respectively; at 100% average road surface luminance of 1.14 cd/m(2)). Driving tasks involved recognition distances and reaction times to a low contrast, moving target and a pedestrian walking at the roadside. Participants drove at an average driving speed of 55 km/hr in the streetlight zone. Streetlight dimming significantly delayed driver reaction times to the moving target (F3,13.06 = 6.404; p = 0.007); with an average 0.4 s delay in reaction times under L25 compared to L100, (estimated reduction in recognition distances of 6 m). Pedestrian recognition distances were significantly shorter under dimmed streetlight levels (F3,12.75 = 8.27; p = 0.003); average pedestrian recognition distances were 15 m shorter under L25 compared to L100, and 11 m shorter under L50 compared to L100. These data suggest that streetlight dimming impacts on driver visibility but it is unclear how these differences impact on safety; future studies are required to inform decisions on safe dimming levels for road networks.
Address School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:30317014 Approved no
Call Number GFZ @ kyba @ Serial 2160
Permanent link to this record