|   | 
Details
   web
Records
Author (up) Wood, J.M.; Tyrrell, R.A.; Carberry, T.P.
Title Limitations in drivers' ability to recognize pedestrians at night Type Journal Article
Year 2005 Publication Human Factors Abbreviated Journal Hum Factors
Volume 47 Issue 3 Pages 644-653
Keywords Vision; Public Safety; Adult; Age Factors; Aged; *Automobile Driving/psychology; Clothing; *Darkness; Female; Humans; Male; Middle Aged; Reaction Time; Task Performance and Analysis; Visual Perception
Abstract This study quantified drivers' ability to recognize pedestrians at night. Ten young and 10 older participants drove around a closed road circuit and responded when they first recognized a pedestrian. Four pedestrian clothing and two beam conditions were tested. Results demonstrate that driver age, clothing configuration, headlamp beam, and glare all significantly affect performance. Drivers recognized only 5% of pedestrians in the most challenging condition (low beams, black clothing, glare), whereas drivers recognized 100% of the pedestrians who wore retroreflective clothing configured to depict biological motion (no glare). In the absence of glare, mean recognition distances varied from 0.0 m (older drivers, low beam, black clothing) to 220 m (722 feet; younger drivers, high beam, retroreflective biomotion). These data provide new motivation to minimize interactions between vehicular and pedestrian traffic at night and suggest garment designs to maximize pedestrian conspicuity when these interactions are unavoidable.
Address Center for Eye Research, Queensland University of Technology, Brisbane, Australia. j.wood@qut.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-7208 ISBN Medium
Area Expedition Conference
Notes PMID:16435703 Approved no
Call Number GFZ @ kyba @ Serial 2804
Permanent link to this record
 

 
Author (up) Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z.
Title Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 17 Pages 1958
Keywords Remote Sensing; Public Safety; Crime
Abstract Previous research has recognized the importance of edges to crime. Various scholars have explored how one specific type of edges such as physical edges or social edges affect crime, but rarely investigated the importance of the composite edge effect. To address this gap, this study introduces nightlight data from the Visible Infrared Imaging Radiometer Suite sensor on the Suomi National Polar-orbiting Partnership Satellite (NPP-VIIRS) to measure composite edges. This study defines edges as nightlight gradients—the maximum change of nightlight from a pixel to its neighbors. Using nightlight gradients and other control variables at the tract level, this study applies negative binomial regression models to investigate the effects of edges on the street robbery rate and the burglary rate in Cincinnati. The Akaike Information Criterion (AIC) of models show that nightlight gradients improve the fitness of models of street robbery and burglary. Also, nightlight gradients make a positive impact on the street robbery rate whilst a negative impact on the burglary rate, both of which are statistically significant under the alpha level of 0.05. The different impacts on these two types of crimes may be explained by the nature of crimes and the in-situ characteristics, including nightlight.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2828
Permanent link to this record