toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Stone, T.; Santoni de Sio, F.; Vermaas, P.E. url  doi
openurl 
  Title Driving in the Dark: Designing Autonomous Vehicles for Reducing Light Pollution Type Journal Article
  Year 2019 Publication Science and Engineering Ethics Abbreviated Journal Sci Eng Ethics  
  Volume Issue Pages 1-17  
  Keywords Society; Darkness; Planning; Public Safety; Design for values  
  Abstract This paper proposes that autonomous vehicles should be designed to reduce light pollution. In support of this specific proposal, a moral assessment of autonomous vehicles more comprehensive than the dilemmatic life-and-death questions of trolley problem-style situations is presented. The paper therefore consists of two interrelated arguments. The first is that autonomous vehicles are currently still a technology in development, and not one that has acquired its definitive shape, meaning the design of both the vehicles and the surrounding infrastructure is open-ended. Design for values is utilized to articulate a path forward, by which engineering ethics should strive to incorporate values into a technology during its development phase. Second, it is argued that nighttime lighting-a critical supporting infrastructure-should be a prima facie consideration for autonomous vehicles during their development phase. It is shown that a reduction in light pollution, and more boldly a better balance of lighting and darkness, can be achieved via the design of future autonomous vehicles. Two case studies are examined (parking lots and highways) through which autonomous vehicles may be designed for “driving in the dark.” Nighttime lighting issues are thus inserted into a broader ethics of autonomous vehicles, while simultaneously introducing questions of autonomous vehicles into debates about light pollution.  
  Address Department Ethics/Philosophy of Technology, Delft University of Technology, Delft, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1353-3452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30903370 Approved no  
  Call Number GFZ @ kyba @ Serial 2277  
Permanent link to this record
 

 
Author (up) Suk, J.Y.; Walter, R. url  doi
openurl 
  Title Street Lighting and Public Safety: New Nighttime Lighting Documentation Method Type Journal Article
  Year 2018 Publication ARCC Conference Repository Abbreviated Journal  
  Volume Issue Pages  
  Keywords Public Safety; Lighting  
  Abstract While the rapid transition of street lighting technologies is occurring across the country for its promising benefits of high energy efficiency, higher intensity, long lamp life, and low maintenance, there is a lack of understanding on the impacts from street lighting’s physical characteristics on public safety. Nighttime lighting and its impact on the incidence of crime and roadway accidents has been investigated since the 1960s in the United States and the United Kingdom. However, prior research has not presented any scientific evidence such as quantified lighting characteristic data and its impacts on public safety because they relied on subjective survey inputs or over-simplified quantification of nighttime lighting conditions. To overcome the limitation of previous studies, extensive documentation of street lighting characteristics was conducted in downtown San Antonio, Texas, which adopts both conventional and new street lighting technologies. Two different sets of light level data were collected on roadways in order to measure the amount of light falling on the ground and on drivers’ eyes inside a car. Correlated color temperature and a color rendering index of nighttime lighting were recorded. The collected lighting data was mapped in a Geographic Information Systems database in order to spatially analyze lighting characteristics. The paper first highlights the potential issues with lighting analysis in previous studies. Next, the proposed research methodology to address these issues for both data collection and spatial analyses is explained. Finally, the preliminary documentation and analysis of street lighting characteristics are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2103  
Permanent link to this record
 

 
Author (up) Suk, J.Y.; Walter, R.J. url  doi
openurl 
  Title New nighttime roadway lighting documentation applied to public safety at night: A case study in San Antonio, Texas Type Journal Article
  Year 2019 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society  
  Volume 46 Issue Pages 101459  
  Keywords Lighting; Public Safety; Security; Planning  
  Abstract Built environment and public safety professionals view street lighting as an important factor in improving the well-being of the community at night. Extant research that has examined the relationship between street lighting and public safety has found inconclusive or mixed results and has called for more extensive lighting metrics. Using new lighting measurement technologies and geographic information science, this study builds on previous work to demonstrate new metrics to consider when evaluating public safety, specifically crime and traffic accidents. Downtown San Antonio, Texas is used as a case study to explore illuminance levels on roadways and the driver’s eye, and how these metrics can be used to understand the lighting characteristics of where crime and traffic accidents occur. The findings indicate that the central downtown district in San Antonio has higher illuminance levels than the existing roadway lighting guidelines while the residential downtown neighborhoods have insufficient light levels. Statistical analysis reveals that roadway illuminance levels are higher in areas where no crime occurred and driver’s eye illuminance levels are lower in areas with no traffic accidents. The findings prove the usefulness of new lighting documentation techniques and support the importance of considering illuminance metrics when assessing crime and traffic accidents at night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-6707 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2191  
Permanent link to this record
 

 
Author (up) Sullivan, J.M.; Flannagan, M.J. url  doi
openurl 
  Title Determining the potential safety benefit of improved lighting in three pedestrian crash scenarios Type Journal Article
  Year 2007 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev  
  Volume 39 Issue 3 Pages 638-647  
  Keywords Lighting; Accidents, Traffic/*prevention & control/statistics & numerical data; Automobile Driving/*psychology; Darkness/*adverse effects; *Environment Design; Humans; Lighting/*standards; Prevalence; Risk; *Safety; Time; *Visual Perception; *Walking  
  Abstract The influence of light level was determined for three pedestrian crash scenarios associated with three adaptive headlighting solutions-curve lighting, motorway lighting, and cornering light. These results were coupled to corresponding prevalence data for each scenario to derive measures of annual lifesaving potential. For each scenario, the risk associated with light level was determined using daylight saving time (DST) transitions to produce a dark/light interval risk ratio; prevalence was determined using the corresponding annual crash rate in darkness for each scenario. For curve lighting, pedestrian crashes on curved roadways were examined; for motorway lighting, crashes associated with high speed roadways were examined; and for cornering light, crashes involving turning vehicles at intersections were examined. In the curve analysis, lower dark/light crash ratios were observed for curved sections of roadway compared to straight roads. In the motorway analysis, posted speed limit was the dominant predictor of this ratio for the fatal crash dataset; road function class was the dominant predictor of the ratio for the fatal/nonfatal dataset. Finally, in the intersection crash analysis, the dark/light ratio for turning vehicles was lower than for nonturning vehicles; and the ratio at intersections was lower than at non-intersections. Relative safety need was determined by combining the dark/light ratio with prevalence data to produce an idealized measure of lifesaving potential. While all three scenarios suggested a potential for safety improvement, scenarios related to high speed roadway environments showed the greatest potential.  
  Address The University of Michigan Transportation Research Institute, 2901 Baxter Road, Ann Arbor, MI 48109-2150, USA. jsully@umich.edu <jsully@umich.edu>  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4575 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17126278 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 648  
Permanent link to this record
 

 
Author (up) Sullivan, J.M.; Flannagan, M.J. url  doi
openurl 
  Title The role of ambient light level in fatal crashes: inferences from daylight saving time transitions Type Journal Article
  Year 2002 Publication Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention  
  Volume 34 Issue 4 Pages 487-498  
  Keywords Public Safety; Lighting  
  Abstract The purpose of this study was to estimate the size of the influence of ambient light level on fatal pedestrian and vehicle crashes in three scenarios. The scenarios were: fatal pedestrian crashes at intersections, fatal pedestrian crashes on dark rural roads, and fatal single-vehicle run-off-road crashes on dark, curved roads. Each scenario's sensitivity to light level was evaluated by comparing the number of fatal crashes across changes to and from daylight saving time, within daily time periods in which an abrupt change in light level occurs relative to official clock time. The analyses included 11 years of fatal crashes in the United States, between 1987 and 1997. Scenarios involving pedestrians were most sensitive to light level, in some cases showing up to seven times more risk at night over daytime. In contrast, single-vehicle run-off-road crashes showed little difference between light and dark time periods, suggesting factors other than light level play the dominant role in these crashes. These results are discussed in the context of the possible safety improvements offered by new developments in adaptive vehicle headlighting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4575 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2126  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: