|   | 
Details
   web
Records
Author Suk, J.Y.; Walter, R.
Title Street Lighting and Public Safety: New Nighttime Lighting Documentation Method Type Journal Article
Year 2018 Publication ARCC Conference Repository Abbreviated Journal
Volume Issue Pages
Keywords Public Safety; Lighting
Abstract While the rapid transition of street lighting technologies is occurring across the country for its promising benefits of high energy efficiency, higher intensity, long lamp life, and low maintenance, there is a lack of understanding on the impacts from street lighting’s physical characteristics on public safety. Nighttime lighting and its impact on the incidence of crime and roadway accidents has been investigated since the 1960s in the United States and the United Kingdom. However, prior research has not presented any scientific evidence such as quantified lighting characteristic data and its impacts on public safety because they relied on subjective survey inputs or over-simplified quantification of nighttime lighting conditions. To overcome the limitation of previous studies, extensive documentation of street lighting characteristics was conducted in downtown San Antonio, Texas, which adopts both conventional and new street lighting technologies. Two different sets of light level data were collected on roadways in order to measure the amount of light falling on the ground and on drivers’ eyes inside a car. Correlated color temperature and a color rendering index of nighttime lighting were recorded. The collected lighting data was mapped in a Geographic Information Systems database in order to spatially analyze lighting characteristics. The paper first highlights the potential issues with lighting analysis in previous studies. Next, the proposed research methodology to address these issues for both data collection and spatial analyses is explained. Finally, the preliminary documentation and analysis of street lighting characteristics are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2103
Permanent link to this record
 

 
Author Wood, J.M.; Isoardi, G.; Black, A.; Cowling, I.
Title Night-time driving visibility associated with LED streetlight dimming Type Journal Article
Year 2018 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 121 Issue Pages 295-300
Keywords Public Safety
Abstract New LED streetlighting designs and dimming are being introduced worldwide, however, while their cost savings are well established, their impact on driving performance has received little attention. This study investigated the effect of streetlight dimming on night-time driving performance. Participants included 14 licensed drivers (mean age 34.2 +/- 4.9 years, range 27-40 years) who drove an instrumented vehicle around a closed circuit at night. Six LED streetlights were positioned along a 250 m, straight section and their light output varied between laps (dimming levels of 25%, 50%, 75% and 100% of maximum output; L25, L50, L75 and L100 respectively; at 100% average road surface luminance of 1.14 cd/m(2)). Driving tasks involved recognition distances and reaction times to a low contrast, moving target and a pedestrian walking at the roadside. Participants drove at an average driving speed of 55 km/hr in the streetlight zone. Streetlight dimming significantly delayed driver reaction times to the moving target (F3,13.06 = 6.404; p = 0.007); with an average 0.4 s delay in reaction times under L25 compared to L100, (estimated reduction in recognition distances of 6 m). Pedestrian recognition distances were significantly shorter under dimmed streetlight levels (F3,12.75 = 8.27; p = 0.003); average pedestrian recognition distances were 15 m shorter under L25 compared to L100, and 11 m shorter under L50 compared to L100. These data suggest that streetlight dimming impacts on driver visibility but it is unclear how these differences impact on safety; future studies are required to inform decisions on safe dimming levels for road networks.
Address School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:30317014 Approved no
Call Number GFZ @ kyba @ Serial 2160
Permanent link to this record
 

 
Author Stone, T.; Santoni de Sio, F.; Vermaas, P.E.
Title Driving in the Dark: Designing Autonomous Vehicles for Reducing Light Pollution Type Journal Article
Year 2019 Publication Science and Engineering Ethics Abbreviated Journal Sci Eng Ethics
Volume Issue Pages 1-17
Keywords Society; Darkness; Planning; Public Safety; Design for values
Abstract This paper proposes that autonomous vehicles should be designed to reduce light pollution. In support of this specific proposal, a moral assessment of autonomous vehicles more comprehensive than the dilemmatic life-and-death questions of trolley problem-style situations is presented. The paper therefore consists of two interrelated arguments. The first is that autonomous vehicles are currently still a technology in development, and not one that has acquired its definitive shape, meaning the design of both the vehicles and the surrounding infrastructure is open-ended. Design for values is utilized to articulate a path forward, by which engineering ethics should strive to incorporate values into a technology during its development phase. Second, it is argued that nighttime lighting-a critical supporting infrastructure-should be a prima facie consideration for autonomous vehicles during their development phase. It is shown that a reduction in light pollution, and more boldly a better balance of lighting and darkness, can be achieved via the design of future autonomous vehicles. Two case studies are examined (parking lots and highways) through which autonomous vehicles may be designed for “driving in the dark.” Nighttime lighting issues are thus inserted into a broader ethics of autonomous vehicles, while simultaneously introducing questions of autonomous vehicles into debates about light pollution.
Address Department Ethics/Philosophy of Technology, Delft University of Technology, Delft, Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1353-3452 ISBN Medium
Area Expedition Conference
Notes PMID:30903370 Approved no
Call Number GFZ @ kyba @ Serial 2277
Permanent link to this record
 

 
Author Wood, J.M.
Title Nighttime driving: visual, lighting and visibility challenges Type Journal Article
Year 2019 Publication Ophthalmic & Physiological Optics : the Journal of the British College of Ophthalmic Opticians (Optometrists) Abbreviated Journal Ophthalmic Physiol Opt
Volume Issue Pages in press
Keywords Review; Public Safety; headlights; nighttime driving; older drivers; pedestrians and cyclists; streetlights; visual performance
Abstract PURPOSE: Nighttime driving is dangerous and is one of the most challenging driving situations for most drivers. Fatality rates are higher at night than in the day when adjusted for distances travelled, particularly for crashes involving pedestrians and cyclists. Although there are multiple contributory factors, the low light levels at night are believed to be the major cause of collisions with pedestrians and cyclists at night, most likely due to their reduced visibility. Understanding the visibility problems involved in nighttime driving is thus critical, given the increased risk to road safety. RECENT FINDINGS: This review discusses research that highlights key differences in the nighttime road environment compared to the day and how this affects visual function and driving performance, together with an overview of studies investigating how driver age and visual status affect nighttime driving performance. Research that has focused on the visibility of vulnerable road users at nighttime (pedestrians and cyclists) is also included. SUMMARY: Collectively, the research evidence suggests that visual function is reduced under the mesopic lighting conditions of night driving and that these effects are exacerbated by increasing age and visual impairment. Light and glare from road lighting and headlights have significant impacts on vision and night driving and these effects are likely to change with evolving technologies, such as LED streetlighting and headlights. Research also highlights the importance of the visibility of vulnerable road users at night and the role of retroreflective clothing in the 'biomotion' configuration for improving their conspicuity and hence safety.
Address School of Optometry and Vision Science and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0275-5408 ISBN Medium
Area Expedition Conference
Notes PMID:31875993 Approved no
Call Number GFZ @ kyba @ Serial 2803
Permanent link to this record
 

 
Author Wood, J.M.; Tyrrell, R.A.; Carberry, T.P.
Title Limitations in drivers' ability to recognize pedestrians at night Type Journal Article
Year 2005 Publication Human Factors Abbreviated Journal Hum Factors
Volume 47 Issue 3 Pages 644-653
Keywords Vision; Public Safety; Adult; Age Factors; Aged; *Automobile Driving/psychology; Clothing; *Darkness; Female; Humans; Male; Middle Aged; Reaction Time; Task Performance and Analysis; Visual Perception
Abstract This study quantified drivers' ability to recognize pedestrians at night. Ten young and 10 older participants drove around a closed road circuit and responded when they first recognized a pedestrian. Four pedestrian clothing and two beam conditions were tested. Results demonstrate that driver age, clothing configuration, headlamp beam, and glare all significantly affect performance. Drivers recognized only 5% of pedestrians in the most challenging condition (low beams, black clothing, glare), whereas drivers recognized 100% of the pedestrians who wore retroreflective clothing configured to depict biological motion (no glare). In the absence of glare, mean recognition distances varied from 0.0 m (older drivers, low beam, black clothing) to 220 m (722 feet; younger drivers, high beam, retroreflective biomotion). These data provide new motivation to minimize interactions between vehicular and pedestrian traffic at night and suggest garment designs to maximize pedestrian conspicuity when these interactions are unavoidable.
Address Center for Eye Research, Queensland University of Technology, Brisbane, Australia. j.wood@qut.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-7208 ISBN Medium
Area Expedition Conference
Notes PMID:16435703 Approved no
Call Number GFZ @ kyba @ Serial 2804
Permanent link to this record