toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van Schalkwyk, I.; Venkataraman, N.; Shankar, V.; Milton, J.; Bailey, T.; Calais, K. url  openurl
  Title Evaluation of the Safety Performance of Continuous Mainline Roadway Lighting on Freeway Segments in Washington State Type Report
  Year 2016 Publication Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords Public Safety; traffic; traffic safety; road safety; continuous roadway lighting; Washington; United States  
  Abstract Washington State Department of Transportation (WSDOT) evaluated continuous roadway lighting on mainline freeway segments in Washington State. An extensive literature review on the safety performance of roadway lighting was completed. As part of this research effort WSDOT developed multivariate random parameter (RP) models with specific lighting variables for continuous lighting on mainline freeway segments. Roadway lighting is often used as a countermeasure to address nighttime crashes and this research evaluates common assumption related to roadway lighting. The models developed for this research use crashes from the end of civil dusk twilight to the start of civil dawn twilight since lighting systems are of limited value outside these timeframes. Natural light conditions were estimated for crashes based on location and time of the crash event. Based on the RP results, the research team concludes that the contribution of continuous illumination to nighttime crash reduction is negligible. In addition to the findings on safety performance, a pilot LED project on US101 demonstrated that LED roadway lighting can significantly increase energy efficiency and environmental stewardship (e.g., reducing greenhouse gas emissions) while maintaining safety performance outcomes. The research team recommended modification to WSDOT design policy, including removal of the requirement of continuous mainline lighting and reduction of lighting where segment specific analysis indicates appropriate.  
  Address Washington State Department of Transportation 310 Maple Park Ave SE, Olympia, WA, USA  
  Corporate Author Thesis  
  Publisher Washington State Department of Transportation Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title WSDOT Research Report Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1427  
Permanent link to this record
 

 
Author Clanton, N.; Gibbons, R.; Garcia, J.; Barber, M. url  doi
openurl 
  Title Seattle LED Adaptive Lighting Study Type Report
  Year 2014 Publication Northwest Energy Efficiency Alliance Abbreviated Journal NEEA  
  Volume (down) Issue E14-286 Pages  
  Keywords Public Safety; Lighting; Planning; Vision  
  Abstract The Northwest Energy Efficiency Alliance (NEEA) and the City of Seattle partnered to evaluate the future of solid state street lighting in the Pacific Northwest with a two-night demonstration in Seattle's Ballard neighborhood in March 2012. The study evaluates the effectiveness of LED streetlights on nighttime driver object detection visibility as function of light source spectral distribution (color temperature in degrees K) and light distribution. Clanton & Associates and VTTI also evaluated adaptive lighting (tuning of streetlights during periods of reduced vehicular and pedestrian activity) at three levels: one hundred percent of full light output, fifty percent of full light output, and twenty-five percent of full light output. The study, led by Clanton & Associates, Continuum Industries, and the VTTI, built upon previous visual performance studies conducted in Anchorage, Alaska; San Diego, California; and San Jose, California. The use of LED technology for city street lighting is becoming more widespread. While these lights are primarily touted for their energy efficiency, the combination of LEDs with advanced control technology, changes to lighting criteria, and a better understanding of human mesopic (low light level) visibility creates an enormous potential for energy savings and improved motorist and pedestrian visibility and safety. Data from these tests support the following statements: LED luminaires with a correlated color temperature of 4100K provide the highest detection distance, including statistically significantly better detection distance when compared to HPS luminaires of higher wattage. The non-uniformity of the lighting on the roadway surface provides a visibility enhancement and greater contrast for visibility. Contrast of objects, both positive and negative, is a better indicator of visibility than is average luminance level. Dimming the LED luminaires to fifty percent of IES RP-8 levels did not significantly reduce object detection distance in dry pavement conditions. Participants perceived dimming of sidewalks as less acceptable than dimming to the same level on the roadway. Asymmetric lighting did reduce glare and performed similarly to the symmetric lighting at the same color temperature (4100K).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1763  
Permanent link to this record
 

 
Author Suk, J.Y.; Walter, R. url  doi
openurl 
  Title Street Lighting and Public Safety: New Nighttime Lighting Documentation Method Type Journal Article
  Year 2018 Publication ARCC Conference Repository Abbreviated Journal  
  Volume (down) Issue Pages  
  Keywords Public Safety; Lighting  
  Abstract While the rapid transition of street lighting technologies is occurring across the country for its promising benefits of high energy efficiency, higher intensity, long lamp life, and low maintenance, there is a lack of understanding on the impacts from street lighting’s physical characteristics on public safety. Nighttime lighting and its impact on the incidence of crime and roadway accidents has been investigated since the 1960s in the United States and the United Kingdom. However, prior research has not presented any scientific evidence such as quantified lighting characteristic data and its impacts on public safety because they relied on subjective survey inputs or over-simplified quantification of nighttime lighting conditions. To overcome the limitation of previous studies, extensive documentation of street lighting characteristics was conducted in downtown San Antonio, Texas, which adopts both conventional and new street lighting technologies. Two different sets of light level data were collected on roadways in order to measure the amount of light falling on the ground and on drivers’ eyes inside a car. Correlated color temperature and a color rendering index of nighttime lighting were recorded. The collected lighting data was mapped in a Geographic Information Systems database in order to spatially analyze lighting characteristics. The paper first highlights the potential issues with lighting analysis in previous studies. Next, the proposed research methodology to address these issues for both data collection and spatial analyses is explained. Finally, the preliminary documentation and analysis of street lighting characteristics are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2103  
Permanent link to this record
 

 
Author Rea, M.; Skinner, N.; Bullough, J. url  doi
openurl 
  Title A Novel Barricade Warning Light System Using Wireless Communications Type Journal Article
  Year 2018 Publication SAE Technical Paper 2018-01-5036 Abbreviated Journal  
  Volume (down) In press Issue Pages  
  Keywords Lighting; Safety  
  Abstract Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface. A successful field demonstration of the system verified that its functions were viewed favorably by transportation safety personnel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2117  
Permanent link to this record
 

 
Author Stone, T.; Santoni de Sio, F.; Vermaas, P.E. url  doi
openurl 
  Title Driving in the Dark: Designing Autonomous Vehicles for Reducing Light Pollution Type Journal Article
  Year 2019 Publication Science and Engineering Ethics Abbreviated Journal Sci Eng Ethics  
  Volume (down) Issue Pages 1-17  
  Keywords Society; Darkness; Planning; Public Safety; Design for values  
  Abstract This paper proposes that autonomous vehicles should be designed to reduce light pollution. In support of this specific proposal, a moral assessment of autonomous vehicles more comprehensive than the dilemmatic life-and-death questions of trolley problem-style situations is presented. The paper therefore consists of two interrelated arguments. The first is that autonomous vehicles are currently still a technology in development, and not one that has acquired its definitive shape, meaning the design of both the vehicles and the surrounding infrastructure is open-ended. Design for values is utilized to articulate a path forward, by which engineering ethics should strive to incorporate values into a technology during its development phase. Second, it is argued that nighttime lighting-a critical supporting infrastructure-should be a prima facie consideration for autonomous vehicles during their development phase. It is shown that a reduction in light pollution, and more boldly a better balance of lighting and darkness, can be achieved via the design of future autonomous vehicles. Two case studies are examined (parking lots and highways) through which autonomous vehicles may be designed for “driving in the dark.” Nighttime lighting issues are thus inserted into a broader ethics of autonomous vehicles, while simultaneously introducing questions of autonomous vehicles into debates about light pollution.  
  Address Department Ethics/Philosophy of Technology, Delft University of Technology, Delft, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1353-3452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30903370 Approved no  
  Call Number GFZ @ kyba @ Serial 2277  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: