|   | 
Details
   web
Records
Author Marchant, P.; Hale, J.D.; Sadler, J.P.
Title Does changing to brighter road lighting improve road safety? Multilevel longitudinal analysis of road traffic collision frequency during the relighting of a UK city Type Journal Article
Year (down) 2020 Publication Journal of Epidemiology & Community Health Abbreviated Journal J. Epidemiol. Community Health
Volume Issue Pages
Keywords Public Safety; traffic safety; Roadway lighting; road safety; road traffic collisions; United Kingdom
Abstract Background A step change in the night environment is taking place, with the large-scale installation of bright, broad-spectrum road lighting such as white light-emitting diodes (LEDs). One justification for this is a reduction in road traffic collisions (RTCs). This study aimed to estimate the effect of new lighting on personal injury RTCs within a large UK city.

Methods We analysed a 9-year time series of weekly RTC personal injury counts in 132 areas of the city using multilevel modelling. The RTC rate over a full 24-hour period was the primary outcome; darkness and daylight RTC rates were secondary. The background change in RTC rate was separated from the change associated with the number of newly installed bright lamps by including a polynomial underlying time trend for the logarithm of the mean number of collisions per week for each area. The study was based on a rigorous, predesigned and archived protocol.

Results Within-area coefficients for the broad lighting effect were positive; as the number of bright lamps in an area increased, so did the RTC rate. The estimate for the increase in the within-area 24-hour RTC rate is 11% (95% CI 2% to 20%). The estimate of darkness-only RTCs is 16% (95% CI 2% to 32%). If the effect of lighting on darkness RTC rate is adjusted by that for daylight, one obtains 4% (95% CI −12% to +23%).

Conclusion No evidence was found for bright lamps leading to an improvement in road safety in any of the analyses. For this city, introducing brighter road lighting may have compromised safety rather than reducing harm.
Address Room 221, Leighton Hall, Leeds Beckett University, Headingley Campus, Leeds LS1 3HE, UK; p.marchant(at) leedsbeckett.ac.uk
Corporate Author Thesis
Publisher BML Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2835
Permanent link to this record
 

 
Author Marchant, Paul
Title Bad Science: comments on the paper ‘Quantifying the impact of road lighting on road safety — a New zealand Study’ by Jackett & Frith (2013). Type Journal Article
Year (down) 2020 Publication World Transport Policy and Practice Abbreviated Journal World Transp Policy & Practice
Volume 26 Issue 2 Pages 10-20
Keywords Safety; Security; Commentary; Statistics; Collisions
Abstract The paper of Jackett & Frith (2013), which purports to show considerable gains for road safety with increasing road luminance, is seriously flawed. It asserts that increasing the luminance on roads causes improvements in road safety. Its cross-sectional design fails to rule out major potential confounders. using a longitudinal design would be a far superior approach. The paper exhibits poor statistical practice. The selection process for the relatively small sample of urban roads is unclear and the post hoc processing of the data is questionable. The analysis is seriously deficient, as variables which indicate detrimental effects of increased road lighting are removed from the modelling without proper justification and other variables are not included in the first analysis yet appear in the subsequent cosmetic analyses. The latter give an illusion of false certainty. The data collected, which would allow checking, is not published. The practice of the journal in which the paper appeared is seriously deficient in not allowing the publication of critical responses. although being used to promote increased road lighting, the paper’s claim disagrees with results from better quality research
Address 221 Leighton Hall, Leeds Beckett University, Leeds, United Kingdom LS1 3HE; p.marchant(at)leedsbeckett.ac.uk
Corporate Author Thesis
Publisher World Transport Policy and Practice Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-7614 ISBN Medium
Area Expedition Conference
Notes A corrected appendix to this paper is available on page 50 of: http://worldtransportjournal.com/wp-content/uploads/2020/08/26.3-final.pdf. Approved no
Call Number GFZ @ kyba @ Serial 2862
Permanent link to this record
 

 
Author Svechkina, A.; Trop, T.; Portnov, B.A.
Title How Much Lighting is Required to Feel Safe When Walking Through the Streets at Night? Type Journal Article
Year (down) 2020 Publication Sustainability Abbreviated Journal Sustainability
Volume 12 Issue 8 Pages 3133
Keywords Public Safety; Security
Abstract Public space lighting (PSL) is indispensable after the natural dark. However, little is known about how much PSL people actually need to feel sufficiently safe in different real-world urban settings. The present study attempts to answer this question by employing a novel real-time interactive approach, according to which, observers use a specially-designed mobile phone application to assess and report the perceived attributes of street lighting and the feeling of safety (FoS) it generates. To validate the proposed approach, a systematic survey was conducted in three cities in Israel—Tel Aviv-Yafo and Haifa, which lie on the Mediterranean coast, and Be’er Sheba, which lies inland. Additionally, instrumental PSL measurements were performed at the same locations. As the study reveals, the necessary level of illumination required by urban residents to feel safe differs by city and is significantly higher in Be’er Sheba, other factors held equal, in compare to Haifa and Tel Aviv-Yafo. This difference may be attributed to stronger daylight that the residents of the desert city of Be’er Sheba are accustomed to, and, therefore, may prefer stronger nighttime illumination. The difference could also be related to the relatively low socio-economic status and somewhat higher crime rates in the latter city. Findings also show a significant and positive association between FoS and instrumentally measured PSL levels, although this association exhibits diminishing returns. To the best of our knowledge, the present study is the first to use an interactive location- and time-based mobile phone technology, which can potentially provide more accurate and reliable assessments, compared to traditional “pen and paper” survey techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2884
Permanent link to this record
 

 
Author Liu, J.; Cai, J.; Lin, S.; Zhao, J.
Title Analysis of Factors Affecting a Driver’s Driving Speed Selection in Low Illumination Type Journal Article
Year (down) 2020 Publication Journal of Advanced Transportation Abbreviated Journal Journal of Advanced Transportation
Volume 2020 Issue Pages Article ID 2817801
Keywords Public Safety
Abstract To better understand a driver’s driving speed selection behaviour in low illumination, a self-designed questionnaire was applied to investigate driving ability in low illumination, and the influencing factors of low-illumination driving speed selection behaviour were discussed from the driver’s perspective. The reliability and validity of 243 questionnaires were tested, and multiple linear regression was used to analyse the comprehensive influence of demographic variables, driving speed in a low-illumination environment with street lights and driving ability on speed selection behaviour in low illumination without street lights. Pearson’s correlation test showed that there was no correlation among age, education, accidents in the past 3 years, and speed selection behaviour in low illumination, but gender, driving experience, number of night-driving days per week, and average annual mileage were significantly correlated with speed selection behaviour. In a low-illumination environment, driving ability has a significant influence on a driver’s speed selection behaviour. Technical driving ability under low-illumination conditions of street lights has the greatest influence on speed selection behaviour on a road with a speed limit of 120 km/h (β = 0.51). Risk perception ability has a significant negative impact on speed selection behaviour on roads with speed limits of 80 km/h and 120 km/h (β = −0.25 and β = −0.34, respectively). Driving speed in night-driving environment with street lights also has a positive influence on speed selection behaviour in low illumination (β = 0.61; β = 0.28; β = 0.37).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0197-6729 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2913
Permanent link to this record
 

 
Author Raynham, P.; Unwin, J.; Khazova, M.; Tolia, S.
Title The role of lighting in road traffic collisions Type Journal Article
Year (down) 2020 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume 52 Issue 4 Pages 485-494
Keywords Public Safety
Abstract The paper reports a study that examines how to determine if a road traffic collision took place in daylight or in the dark. An innovative method was developed, based on solar altitude, to establish cut-off points of daylight and darkness determined from a study of daylight availability in England, Scotland and Wales. This approach provides a rigorous method to differentiate daytime and night-time collisions. The criteria were used in a study of the collisions reported in the STATS19 data set for the weeks either side of the clock changes that are necessary between Greenwich Mean Time and British Summer Time. By comparing periods with the same clock time either side of the time change, using the aforementioned method, it was possible to isolate collisions within the same time period that during one week occurred in darkness and in the other week in daylight. The initial finding was that there are 19.3% more collisions in the dark periods and there is an even greater increase (31.7%) in pedestrian injuries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2991
Permanent link to this record