toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Berson, D.M.; Dunn, F.A.; Takao, M. url  doi
openurl 
  Title Phototransduction by retinal ganglion cells that set the circadian clock Type Journal Article
  Year (up) 2002 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 295 Issue 5557 Pages 1070-1073  
  Keywords Human Health; Animals; Axons/ultrastructure; *Biological Clocks; *Circadian Rhythm; Dendrites/ultrastructure; Isoquinolines; Kinetics; Light; *Light Signal Transduction; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Retinal Ganglion Cells/chemistry/cytology/*physiology; Rod Opsins/analysis/physiology; Suprachiasmatic Nucleus/cytology/*physiology  
  Abstract Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.  
  Address Department of Neuroscience, Brown University, Providence, RI, 02912 USA. David_Berson@brown.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11834835 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 720  
Permanent link to this record
 

 
Author Foster, R.G. url  doi
openurl 
  Title Neurobiology: bright blue times Type Journal Article
  Year (up) 2005 Publication Nature Abbreviated Journal Nature  
  Volume 433 Issue 7027 Pages 698-699  
  Keywords Human Health; Animals; Circadian Rhythm/physiology/radiation effects; Color Perception/physiology/*radiation effects; Humans; *Light; Light Signal Transduction/*radiation effects; Mice; Retinal Ganglion Cells/cytology/physiology/radiation effects; Retinaldehyde/chemistry/metabolism; Rod Opsins/*metabolism; NASA Discipline Space Human Factors; Non-NASA Center  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15716938 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 750  
Permanent link to this record
 

 
Author Bullough, J.D.; Rea, M.S.; Figueiro, M.G. url  doi
openurl 
  Title Of mice and women: light as a circadian stimulus in breast cancer research Type Journal Article
  Year (up) 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control  
  Volume 17 Issue 4 Pages 375-383  
  Keywords Human Health; Animals; Breast Neoplasms/*physiopathology; *Circadian Rhythm; *Disease Models, Animal; Female; Humans; *Light; Light Signal Transduction; Mammary Neoplasms, Animal/*physiopathology; Melatonin/metabolism; Mice; Muridae/metabolism  
  Abstract OBJECTIVE: Nocturnal rodents are frequently used as models in human breast cancer research, but these species have very different visual and circadian systems and, therefore, very different responses to optical radiation or, informally, light. Because of the impact of light on the circadian system and because recent evidence suggests that cancer risk might be related to circadian disruption, it is becoming increasingly clear that optical radiation must be properly characterized for both nocturnal rodents and diurnal humans to make significant progress in unraveling links between circadian disruption and breast cancer. In this paper, we propose a quantitative framework for comparing radiometric and photometric quantities in human and rodent studies. METHODS: We reviewed published research on light as a circadian stimulus for humans and rodents. Both suppression of nocturnal melatonin and phase shifting were examined as outcome measures for the circadian system. RESULTS: The data were used to develop quantitative comparisons regarding the absolute and spectral sensitivity for the circadian systems of humans and nocturnal rodents. CONCLUSIONS: Two models of circadian phototransduction, for mouse and humans, have been published providing spectral sensitivities for these two species. Despite some methodological variations among the studies reviewed, the circadian systems of nocturnal rodents are approximately 10,000 times more sensitive to optical radiation than that of humans. Circadian effectiveness of different sources for both humans and nocturnal rodents are offered together with a scale relating their absolute sensitivities. Instruments calibrated in terms of conventional photometric units (e.g., lux) will not accurately characterize the circadian stimulus for either humans or rodents.  
  Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA. bulloj@rpi.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-5243 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16596289 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 726  
Permanent link to this record
 

 
Author Jasser, S.A.; Blask, D.E.; Brainard, G.C. url  doi
openurl 
  Title Light during darkness and cancer: relationships in circadian photoreception and tumor biology Type Journal Article
  Year (up) 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control  
  Volume 17 Issue 4 Pages 515-523  
  Keywords Human Health; Animals; *Circadian Rhythm; *Darkness; Humans; *Light; Light Signal Transduction; Melatonin/physiology/secretion; Neoplasms/etiology/pathology/*physiopathology; Suprachiasmatic Nucleus/physiology  
  Abstract The relationship between circadian phototransduction and circadian-regulated processes is poorly understood. Melatonin, commonly a circadian phase marker, may play a direct role in a myriad of physiologic processes. The circadian rhythm for pineal melatonin secretion is regulated by the hypothalamic suprachiasmatic nucleus (SCN). Its neural source of light input is a unique subset of intrinsically photosensitive retinal ganglion cells expressing melanopsin, the primary circadian photopigment in rodents and primates. Action spectra of melatonin suppression by light have shown that light in the 446-477 nm range, distinct from the visual system's peak sensitivity, is optimal for stimulating the human circadian system. Breast cancer is the oncological disease entity whose relationship to circadian rhythm fluctuations has perhaps been most extensively studied. Empirical data has increasingly supported the hypothesis that higher risk of breast cancer in industrialized countries is partly due to increased exposure to light at night. Studies of tumor biology implicate melatonin as a potential mediator of this effect. Yet, causality between lifestyle factors and circadian tumor biology remains elusive and likely reflects significant variability with physiologic context. Continued rigorous empirical inquiry into the physiology and clinical implications of these habitual, integrated aspects of life is highly warranted at this time.  
  Address Department of Neurology, Light Research Program, Thomas Jefferson University, 1025 Walnut Street, Suite 507, Philadelphia, PA 19107, USA. samar.jasser@jefferson.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-5243 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16596305 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 766  
Permanent link to this record
 

 
Author Stevens, R.G.; Blask, D.E.; Brainard, G.C.; Hansen, J.; Lockley, S.W.; Provencio, I.; Rea, M.S.; Reinlib, L. url  doi
openurl 
  Title Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases Type Journal Article
  Year (up) 2007 Publication Environmental Health Perspectives Abbreviated Journal Environ Health Perspect  
  Volume 115 Issue 9 Pages 1357-1362  
  Keywords Human Health; Animals; *Circadian Rhythm; Environmental Exposure; Humans; *Lighting/adverse effects; *Neoplasms/etiology; Research; breast cancer; circadian rhythms; clock genes; lighting; melatonin; phototransduction; pineal gland  
  Abstract Light, including artificial light, has a range of effects on human physiology and behavior and can therefore alter human physiology when inappropriately timed. One example of potential light-induced disruption is the effect of light on circadian organization, including the production of several hormone rhythms. Changes in light-dark exposure (e.g., by nonday occupation or transmeridian travel) shift the timing of the circadian system such that internal rhythms can become desynchronized from both the external environment and internally with each other, impairing our ability to sleep and wake at the appropriate times and compromising physiologic and metabolic processes. Light can also have direct acute effects on neuroendocrine systems, for example, in suppressing melatonin synthesis or elevating cortisol production that may have untoward long-term consequences. For these reasons, the National Institute of Environmental Health Sciences convened a workshop of a diverse group of scientists to consider how best to conduct research on possible connections between lighting and health. According to the participants in the workshop, there are three broad areas of research effort that need to be addressed. First are the basic biophysical and molecular genetic mechanisms for phototransduction for circadian, neuroendocrine, and neurobehavioral regulation. Second are the possible physiologic consequences of disrupting these circadian regulatory processes such as on hormone production, particularly melatonin, and normal and neoplastic tissue growth dynamics. Third are effects of light-induced physiologic disruption on disease occurrence and prognosis, and how prevention and treatment could be improved by application of this knowledge.  
  Address Department of Community Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-6325, USA. bugs@uchc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17805428; PMCID:PMC1964886 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 821  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: