|   | 
Details
   web
Records
Author (down) Stevens, R.G.
Title Light-at-night, circadian disruption and breast cancer: assessment of existing evidence Type Journal Article
Year 2009 Publication International Journal of Epidemiology Abbreviated Journal Int J Epidemiol
Volume 38 Issue 4 Pages 963-970
Keywords Human Health; Animals; Blindness/complications/epidemiology; Breast Neoplasms/epidemiology/*etiology/metabolism; Chronobiology Disorders/*complications/epidemiology/metabolism; Circadian Rhythm/physiology; Disease Models, Animal; Female; Humans; Light Signal Transduction/physiology; Lighting/adverse effects; Melatonin/biosynthesis; Sleep/physiology; Time Factors; *Work Schedule Tolerance
Abstract BACKGROUND: Breast cancer incidence is increasing globally for largely unknown reasons. The possibility that a portion of the breast cancer burden might be explained by the introduction and increasing use of electricity to light the night was suggested >20 years ago. METHODS: The theory is based on nocturnal light-induced disruption of circadian rhythms, notably reduction of melatonin synthesis. It has formed the basis for a series of predictions including that non-day shift work would increase risk, blind women would be at lower risk, long sleep duration would lower risk and community nighttime light level would co-distribute with breast cancer incidence on the population level. RESULTS: Accumulation of epidemiological evidence has accelerated in recent years, reflected in an International Agency for Research on Cancer (IARC) classification of shift work as a probable human carcinogen (2A). There is also a strong rodent model in support of the light-at-night (LAN) idea. CONCLUSION: If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation. The basic understanding of phototransduction for the circadian system, and of the molecular genetics of circadian rhythm generation are both advancing rapidly, and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. In the interim, there are strategies now available to reduce the potential for circadian disruption, which include extending the daily dark period, appreciate nocturnal awakening in the dark, using dim red light for nighttime necessities, and unless recommended by a physician, not taking melatonin tablets.
Address Department of Community Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-6325, USA. bugs@uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-5771 ISBN Medium
Area Expedition Conference
Notes PMID:19380369; PMCID:PMC2734067 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 527
Permanent link to this record
 

 
Author (down) Reddy, A.B.; O'Neill, J.S.
Title Healthy clocks, healthy body, healthy mind Type Journal Article
Year 2010 Publication Trends in Cell Biology Abbreviated Journal Trends Cell Biol
Volume 20 Issue 1 Pages 36-44
Keywords Aging; Animals; Cell Cycle; *Circadian Rhythm; Humans; Neoplasms/genetics/metabolism; Signal Transduction
Abstract Circadian rhythms permeate mammalian biology. They are manifested in the temporal organisation of behavioural, physiological, cellular and neuronal processes. Whereas it has been shown recently that these approximately 24-hour cycles are intrinsic to the cell and persist in vitro, internal synchrony in mammals is largely governed by the hypothalamic suprachiasmatic nuclei that facilitate anticipation of, and adaptation to, the solar cycle. Our timekeeping mechanism is deeply embedded in cell function and is modelled as a network of transcriptional and/or post-translational feedback loops. Concurrent with this, we are beginning to understand how this ancient timekeeper interacts with myriad cell systems, including signal transduction cascades and the cell cycle, and thus impacts on disease. An exemplary area where this knowledge is rapidly expanding and contributing to novel therapies is cancer, where the Period genes have been identified as tumour suppressors. In more complex disorders, where aetiology remains controversial, interactions with the clockwork are only now starting to be appreciated.
Address Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge CB2 OQQ, UK. abr20@cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8924 ISBN Medium
Area Expedition Conference
Notes PMID:19926479; PMCID:PMC2808409 Approved no
Call Number IDA @ john @ Serial 133
Permanent link to this record
 

 
Author (down) Jasser, S.A.; Blask, D.E.; Brainard, G.C.
Title Light during darkness and cancer: relationships in circadian photoreception and tumor biology Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control
Volume 17 Issue 4 Pages 515-523
Keywords Human Health; Animals; *Circadian Rhythm; *Darkness; Humans; *Light; Light Signal Transduction; Melatonin/physiology/secretion; Neoplasms/etiology/pathology/*physiopathology; Suprachiasmatic Nucleus/physiology
Abstract The relationship between circadian phototransduction and circadian-regulated processes is poorly understood. Melatonin, commonly a circadian phase marker, may play a direct role in a myriad of physiologic processes. The circadian rhythm for pineal melatonin secretion is regulated by the hypothalamic suprachiasmatic nucleus (SCN). Its neural source of light input is a unique subset of intrinsically photosensitive retinal ganglion cells expressing melanopsin, the primary circadian photopigment in rodents and primates. Action spectra of melatonin suppression by light have shown that light in the 446-477 nm range, distinct from the visual system's peak sensitivity, is optimal for stimulating the human circadian system. Breast cancer is the oncological disease entity whose relationship to circadian rhythm fluctuations has perhaps been most extensively studied. Empirical data has increasingly supported the hypothesis that higher risk of breast cancer in industrialized countries is partly due to increased exposure to light at night. Studies of tumor biology implicate melatonin as a potential mediator of this effect. Yet, causality between lifestyle factors and circadian tumor biology remains elusive and likely reflects significant variability with physiologic context. Continued rigorous empirical inquiry into the physiology and clinical implications of these habitual, integrated aspects of life is highly warranted at this time.
Address Department of Neurology, Light Research Program, Thomas Jefferson University, 1025 Walnut Street, Suite 507, Philadelphia, PA 19107, USA. samar.jasser@jefferson.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes PMID:16596305 Approved no
Call Number LoNNe @ kagoburian @ Serial 766
Permanent link to this record
 

 
Author (down) Foster, R.G.
Title Neurobiology: bright blue times Type Journal Article
Year 2005 Publication Nature Abbreviated Journal Nature
Volume 433 Issue 7027 Pages 698-699
Keywords Human Health; Animals; Circadian Rhythm/physiology/radiation effects; Color Perception/physiology/*radiation effects; Humans; *Light; Light Signal Transduction/*radiation effects; Mice; Retinal Ganglion Cells/cytology/physiology/radiation effects; Retinaldehyde/chemistry/metabolism; Rod Opsins/*metabolism; NASA Discipline Space Human Factors; Non-NASA Center
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:15716938 Approved no
Call Number LoNNe @ kagoburian @ Serial 750
Permanent link to this record
 

 
Author (down) Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M.
Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
Year 2011 Publication Annual Review of Plant Biology Abbreviated Journal Annu Rev Plant Biol
Volume 62 Issue Pages 335-364
Keywords Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light
Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
Address Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-5008 ISBN Medium
Area Expedition Conference
Notes PMID:21526969 Approved no
Call Number IDA @ john @ Serial 341
Permanent link to this record