toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aubé, M.; Kocifaj, M. url  doi
openurl 
  Title Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories: Light-pollution models and artificial sky radiances Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume 422 Issue 1 Pages 819-830  
  Keywords Keywords: radiative transfer; atmospheric effects; light pollution; methods: observational; site testing  
  Abstract Astronomical observations are increasingly limited by light pollution, which is a product of the over-illumination of the night sky. To predict both the angular distribution of scattered light and the ground-reaching radiative fluxes, a set of models has been introduced in recent decades. Two distinct numerical tools, MSNsRAu and ILLUMINA, are compared in this paper, with the aim of identifying their strengths and weaknesses. The numerical experiment comprises the simulation of spectral radiances in the region of the Canary Islands. In particular, the light fields near the Roque de los Muchachos and Teide observatories are computed under various turbidity conditions. It is shown that ILLUMINA has enhanced accuracy at low elevation angles. However, ILLUMINA is time-consuming because of the two scattering orders incorporated into the calculation scheme. Under low-turbidity conditions and for zenith angles smaller than 70° the two models agree well, and thus can be successfully applied to typical cloudless situations at the majority of observatories. MSNsRAu is well optimized for large-scale simulations. In particular, the grid size is adapted dynamically depending on the distance between a light source and a hypothetical observer. This enables rapid numerical modelling for large territories. MSNsRAu is also well suited for the mass modelling of night-sky radiances after ground-based light sources are hypothetically changed. This enables an optimum design of public lighting systems and a time-efficient evaluation of the optical effects related to different lamp spectra or different lamp distributions. ILLUMINA provides two diagnostic geographical maps to help local authorities concerned about light-pollution control. The first map allows the identification of the relative contribution of each ground element to the observed sky radiance at a given viewing angle, while the second map gives the sensitivity, basically saying how each ground element contributes per lumen installed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 256  
Permanent link to this record
 

 
Author Cinzano, P.; Elvidge, C.D. url  doi
openurl 
  Title Night sky brightness at sites from DMSP-OLS satellite measurements Type Journal Article
  Year 2004 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 353 Issue 4 Pages 1107-1116  
  Keywords scattering; atmospheric effects; light pollution; site testing; GTOPO30; DMSP  
  Abstract We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution satellite measurements of upward artificial light flux carried out with the US Air Force Defense Meteorological Satellite Program Operational Linescan System and to GTOPO30 (a global digital elevation model by the US Geological Survey's EROS Data Centre) digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the evaluation of sky glow conditions over the entire sky for any site in the world, to evaluate its evolution, to disentangle the contribution of individual sources in the surrounding territory and to identify the main contributing sources. Sky brightness, naked eye stellar visibility and telescope limiting magnitude are produced as three-dimensional arrays, the axes of which are the position on the sky and the atmospheric clarity. We compare our results with available measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 172  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F. url  doi
openurl 
  Title The propagation of light pollution in the atmosphere Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society  
  Volume 427 Issue 4 Pages 3337-3357  
  Keywords radiative transfer; scattering; atmospheric effects; light pollution; site testing; light at night; Garstang model; LPTRAN; DMSP-OLS; GTOPO30; modeling; propagation  
  Abstract Recent methods to map artificial night-sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere that allows fast computation by reducing it to a ray-tracing approach. They are accurate for a clear atmosphere, when a two-scattering approximation is acceptable, which is the most common situation. We present here up-to-date extended Garstang models (EGM), which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) satellite measurements of artificial light emission and to GTOPO30 (Global 30 Arcsecond) digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the world at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atmosphere across the territory. EGM account for (i) multiple scattering, (ii) wavelengths from 250 nm to infrared, (iii) the Earth's curvature and its screening effects, (iv) site and source elevation, (v) many kinds of atmosphere with the possibility of custom set-up (e.g. including thermal inversion layers), (vi) a mix of different boundary-layer aerosols and tropospheric aerosols, with the possibility of custom set-up, (vii) up to five aerosol layers in the upper atmosphere, including fresh and aged volcanic dust and meteoric dust, (viii) variations of the scattering phase function with elevation, (ix) continuum and line gas absorption from many species, ozone included, (x) up to five cloud layers, (xi) wavelength-dependent bidirectional reflectance of the ground surface from National Aeronautics and Space Administration (NASA) Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite data, main models or custom data (snow included) and (xii) geographically variable upward light-emission function given as a three-parameter function or a Legendre polynomial series. Atmospheric scattering properties or light-pollution propagation functions from other sources can also be applied. A more general solution allows us to account also for (xiii) mountain screening, (xiv) geographical gradients of atmospheric conditions, including localized clouds and (xv) geographic distribution of ground surfaces, but suffers from too heavy computational requirements. Comparisons between predictions of classic Garstang models and EGM show close agreement for a US62 standard clear atmosphere and typical upward emission function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 271  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F. url  doi
openurl 
  Title Quantifying light pollution Type Journal Article
  Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 139 Issue Pages 13-20  
  Keywords Atmospheric effects; Astronomical site testing; Scattering; Light pollution; Radiative transfer; Night sky brightness; Environmental pollution; Atmospheric pollution Corresponding author contact information  
  Abstract In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 177  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D. url  doi
openurl 
  Title The first World Atlas of the artificial night sky brightness Type Journal Article
  Year 2001 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 328 Issue 3 Pages 689-707  
  Keywords scattering; atmospheric effects; light pollution; site testing; DMSP  
  Abstract We present the first World Atlas of the zenith artificial night sky brightness at sea level. Based on radiance-calibrated high-resolution DMSP satellite data and on accurate modelling of light propagation in the atmosphere, it provides a nearly global picture of how mankind is proceeding to envelop itself in a luminous fog. Comparing the Atlas with the United States Department of Energy (DOE) population density data base, we determined the fraction of population who are living under a sky of given brightness. About two-thirds of the World population and 99 per cent of the population in the United States (excluding Alaska and Hawaii) and European Union live in areas where the night sky is above the threshold set for polluted status. Assuming average eye functionality, about one-fifth of the World population, more than two-thirds of the United States population and more than one half of the European Union population have already lost naked eye visibility of the Milky Way. Finally, about one-tenth of the World population, more than 40 per cent of the United States population and one sixth of the European Union population no longer view the heavens with the eye adapted to night vision, because of the sky brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 173  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: