toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Evans, J.A.; Elliott, J.A.; Gorman, M.R. url  doi
openurl 
  Title Dim nighttime illumination accelerates adjustment to timezone travel in an animal model Type Journal Article
  Year 2009 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 19 Issue 4 Pages R156-7  
  Keywords *Adaptation, Physiological; Animals; Behavior, Animal/physiology; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Cricetinae; Humans; *Lighting; Mesocricetus; Mice; Motor Activity/physiology; Phodopus; *Photoperiod; Time Factors  
  Abstract Jetlag reflects a mismatch between local and circadian time following rapid timezone travel [1]. Appropriately timed bright light can shift human circadian rhythms but recovery is slow (e.g., 1-2 days per timezone). Most symptoms subside after resynchronization, but chronic jetlag may have enduring negative effects [2], including even accelerated mortality in mice [3]. Melatonin, prescription drugs, and/or exercise may help shift the clock but, like bright light, require complex schedules of application [1]. Thus, there is a need for more efficient and practical treatments for addressing jetlag. In contrast to bright daytime lighting, nighttime conditions have received scant attention. By incorporating more naturalistic nighttime lighting comparable in intensity to dim moonlight, we demonstrate that recovery after simulated jetlag is accelerated when nights are dimly lit rather than completely dark.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19243688 Approved no  
  Call Number IDA @ john @ Serial 152  
Permanent link to this record
 

 
Author Owens, B. url  doi
openurl 
  Title Obesity: heavy sleepers Type Journal Article
  Year 2013 Publication Nature Abbreviated Journal Nature  
  Volume 497 Issue 7450 Pages S8-9  
  Keywords Human Health; Animals; Body Mass Index; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/physiology; Energy Metabolism/*physiology; Ghrelin/metabolism; Humans; Insulin Resistance/physiology; Leptin/metabolism; Male; Mice; Obesity/*physiopathology; Satiety Response/physiology; Sleep/*physiology; Suprachiasmatic Nucleus/physiology; Time Factors; Weight Gain/physiology; Weight Loss/physiology  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23698508 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 503  
Permanent link to this record
 

 
Author Mottram, V.; Middleton, B.; Williams, P.; Arendt, J. url  doi
openurl 
  Title The impact of bright artificial white and 'blue-enriched' light on sleep and circadian phase during the polar winter Type Journal Article
  Year 2011 Publication Journal of Sleep Research Abbreviated Journal J Sleep Res  
  Volume 20 Issue 1 Pt 2 Pages 154-161  
  Keywords Adult; Circadian Rhythm/*physiology; *Cold Climate; Female; Humans; *Light; Male; Medical Records; Questionnaires; Sleep/*physiology; Time Factors; blue light  
  Abstract Delayed sleep phase (and sometimes free-run) is common in the Antarctic winter (no natural sunlight) and optimizing the artificial light conditions is desirable. This project evaluated sleep when using 17,000 K blue-enriched lamps compared with standard white lamps (5000 K) for personal and communal illumination. Base personnel, 10 males, five females, 32.5+/-8 years took part in the study. From 24 March to 21 September 2006 light exposure alternated between 4-5-week periods of standard white (5000 K) and blue-enriched lamps (17,000 K), with a 3-week control before and after extra light. Sleep and light exposure were assessed by actigraphy and sleep diaries. General health (RAND 36-item questionnaire) and circadian phase (urinary 6-sulphatoxymelatonin rhythm) were evaluated at the end of each light condition. Direct comparison (rmanova) of blue-enriched light with white light showed that sleep onset was earlier by 19 min (P=0.022), and sleep latency tended to be shorter by 4 min (P=0.065) with blue-enriched light. Analysing all light conditions, control, blue and white, again provided evidence for greater efficiency of blue-enriched light compared with white (P<0.05), but with the best sleep timing, duration, efficiency and quality in control natural light conditions. Circadian phase was earlier on average in midwinter blue compared with midwinter white light by 45 min (P<0.05). Light condition had no influence on general health. We conclude that the use of blue-enriched light had some beneficial effects, notably earlier sleep, compared with standard white light during the polar winter.  
  Address (up) British Antarctic Survey Medical Unit, Derriford Hospital, Plymouth, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20723022 Approved no  
  Call Number IDA @ john @ Serial 348  
Permanent link to this record
 

 
Author Arendt, J. url  doi
openurl 
  Title Biological rhythms during residence in polar regions Type Journal Article
  Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 4 Pages 379-394  
  Keywords *Acclimatization; Activities of Daily Living; Affect; Antarctic Regions; Arctic Regions; *Biological Clocks; *Circadian Rhythm; *Cold Climate; *Cold Temperature; Energy Metabolism; Feeding Behavior; Humans; Melatonin/metabolism; Personnel Staffing and Scheduling; *Photoperiod; Seasonal Affective Disorder/physiopathology/prevention & control/psychology; *Seasons; Sleep; Sleep Disorders, Circadian Rhythm/etiology/physiopathology/*prevention & control/psychology; Time Factors; Workload; Workplace  
  Abstract At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2 x 1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24 h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with “normal” working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75 degrees S, base personnel adapt the circadian system to night work within a week, in contrast to temperate zones where complete adaptation rarely occurs. A similar situation occurs on high-latitude North Sea oil installations, especially when working 18:00-06:00 h. Lack of conflicting light exposure (and “social obligations”) is the probable explanation. Many have problems returning to day work, showing circadian desynchrony. Timed light treatment again has helped to restore normal phase/sleep in a small number of people. Postprandial response to meals is compromised during periods of desynchrony with evidence of insulin resistance and elevated triglycerides, risk factors for heart disease. Only small numbers of subjects have been studied intensively in polar regions; however, these observations suggest that suboptimal light conditions are deleterious to health. They apply equally to people living in temperate zones with insufficient light exposure.  
  Address (up) Centre for Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK. arendtjo@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22497433; PMCID:PMC3793275 Approved no  
  Call Number IDA @ john @ Serial 143  
Permanent link to this record
 

 
Author Kovac, J.; Husse, J.; Oster, H. url  doi
openurl 
  Title A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock Type Journal Article
  Year 2009 Publication Molecules and Cells Abbreviated Journal Mol Cells  
  Volume 28 Issue 2 Pages 75-80  
  Keywords Human Health; Animals; Biological Clocks/*physiology; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/*physiology; Energy Metabolism/*physiology; Gene Expression Regulation; Homeostasis; Humans; Period Circadian Proteins/genetics/metabolism; Time Factors  
  Abstract The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.  
  Address (up) Circadian Rhythms Group, Max Planck Institute of Biophysical Chemistry, 37077, Gottingen, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1016-8478 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19714310 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 772  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: