|   | 
Details
   web
Records
Author Stevens, R.G.
Title (up) Light-at-night, circadian disruption and breast cancer: assessment of existing evidence Type Journal Article
Year 2009 Publication International Journal of Epidemiology Abbreviated Journal Int J Epidemiol
Volume 38 Issue 4 Pages 963-970
Keywords Human Health; Animals; Blindness/complications/epidemiology; Breast Neoplasms/epidemiology/*etiology/metabolism; Chronobiology Disorders/*complications/epidemiology/metabolism; Circadian Rhythm/physiology; Disease Models, Animal; Female; Humans; Light Signal Transduction/physiology; Lighting/adverse effects; Melatonin/biosynthesis; Sleep/physiology; Time Factors; *Work Schedule Tolerance
Abstract BACKGROUND: Breast cancer incidence is increasing globally for largely unknown reasons. The possibility that a portion of the breast cancer burden might be explained by the introduction and increasing use of electricity to light the night was suggested >20 years ago. METHODS: The theory is based on nocturnal light-induced disruption of circadian rhythms, notably reduction of melatonin synthesis. It has formed the basis for a series of predictions including that non-day shift work would increase risk, blind women would be at lower risk, long sleep duration would lower risk and community nighttime light level would co-distribute with breast cancer incidence on the population level. RESULTS: Accumulation of epidemiological evidence has accelerated in recent years, reflected in an International Agency for Research on Cancer (IARC) classification of shift work as a probable human carcinogen (2A). There is also a strong rodent model in support of the light-at-night (LAN) idea. CONCLUSION: If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation. The basic understanding of phototransduction for the circadian system, and of the molecular genetics of circadian rhythm generation are both advancing rapidly, and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. In the interim, there are strategies now available to reduce the potential for circadian disruption, which include extending the daily dark period, appreciate nocturnal awakening in the dark, using dim red light for nighttime necessities, and unless recommended by a physician, not taking melatonin tablets.
Address Department of Community Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-6325, USA. bugs@uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-5771 ISBN Medium
Area Expedition Conference
Notes PMID:19380369; PMCID:PMC2734067 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 527
Permanent link to this record
 

 
Author Behar-Cohen, F.; Martinsons, C.; Vienot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D.
Title (up) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Type Journal Article
Year 2011 Publication Progress in Retinal and eye Research Abbreviated Journal Prog Retin Eye Res
Volume 30 Issue 4 Pages 239-257
Keywords Animals; Biomass; Circadian Rhythm/physiology; Environmental Exposure; Eye Diseases/*etiology/pathology/physiopathology; Humans; *Light/adverse effects; Lighting/*methods; Reflex, Pupillary/physiology; Retina/pathology; Risk Assessment; *Semiconductors; Time Factors
Abstract Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.
Address Inserm UMRS 872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France. Francine.behar-cohen@crc.jussieur.fr
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-9462 ISBN Medium
Area Expedition Conference
Notes PMID:21600300 Approved no
Call Number IDA @ john @ Serial 240
Permanent link to this record
 

 
Author Bedrosian, T.A.; Vaughn, C.A.; Galan, A.; Daye, G.; Weil, Z.M.; Nelson, R.J.
Title (up) Nocturnal light exposure impairs affective responses in a wavelength-dependent manner Type Journal Article
Year 2013 Publication The Journal of Neuroscience : the Official Journal of the Society for Neuroscience Abbreviated Journal J Neurosci
Volume 33 Issue 32 Pages 13081-13087
Keywords Analysis of Variance; Animals; Circadian Rhythm/*physiology; Cricetinae; Dose-Response Relationship, Radiation; Female; Food Deprivation/physiology; Food Preferences/physiology/radiation effects; Fourier Analysis; Gene Expression Regulation/radiation effects; Hippocampus/pathology/radiation effects; Immobility Response, Tonic/radiation effects; Light/*adverse effects; Mood Disorders/*etiology/pathology; Motor Activity/physiology/radiation effects; Phodopus; Proto-Oncogene Proteins c-fos/metabolism; Social Behavior; Suprachiasmatic Nucleus/metabolism; Time Factors
Abstract Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.
Address Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA. Bedrosian.2@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0270-6474 ISBN Medium
Area Expedition Conference
Notes PMID:23926261 Approved no
Call Number IDA @ john @ Serial 27
Permanent link to this record
 

 
Author Owens, B.
Title (up) Obesity: heavy sleepers Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume 497 Issue 7450 Pages S8-9
Keywords Human Health; Animals; Body Mass Index; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/physiology; Energy Metabolism/*physiology; Ghrelin/metabolism; Humans; Insulin Resistance/physiology; Leptin/metabolism; Male; Mice; Obesity/*physiopathology; Satiety Response/physiology; Sleep/*physiology; Suprachiasmatic Nucleus/physiology; Time Factors; Weight Gain/physiology; Weight Loss/physiology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23698508 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 503
Permanent link to this record
 

 
Author Zukauskas, A.; Vaicekauskas, R.; Vitta, P.
Title (up) Optimization of solid-state lamps for photobiologically friendly mesopic lighting Type Journal Article
Year 2012 Publication Applied Optics Abbreviated Journal Appl Opt
Volume 51 Issue 35 Pages 8423-8432
Keywords Lighting Systems; Circadian Rhythm; Color; Equipment Design; Humans; Light; *Lighting; Melatonin/metabolism; Photobiology/*methods; Semiconductors; Time Factors; Vision, Ocular
Abstract The circadian and visual-performance-based mesopic systems of photometry were applied for the optimization of the spectral power distributions (SPDs) of the solid-state sources of light for low-illuminance lighting applications. At mesopic adaptation luminances typical of outdoor lighting (0.1-2 cd/m(2)), the optimal SPDs were obtained through the minimization of the mesopic circadian action factor, which is the ratio of the circadian efficacy of radiation to mesopic luminous efficacy of radiation. For correlated color temperatures below ~3000 K, the optimized dichromatic light-emitting diodes (LEDs) are shown to pose a lower circadian hazard than high-pressure sodium lamps and common warm white LEDs; also they are potentially more efficacious and have acceptable color rendition properties under mesopic conditions.
Address Institute of Applied Research, Vilnius University, Sauletekio al. 9-III, Vilnius LT-10222, Lithuania. arturas.zukauskas@ff.vu.lt
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6935 ISBN Medium
Area Expedition Conference
Notes PMID:23262538 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 448
Permanent link to this record