toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vollmer, C.; Michel, U.; Randler, C. url  doi
openurl 
  Title (up) Outdoor light at night (LAN) is correlated with eveningness in adolescents Type Journal Article
  Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 4 Pages 502-508  
  Keywords Adolescent; *Adolescent Behavior/drug effects; Biological Clocks; Central Nervous System Stimulants/administration & dosage; *Circadian Rhythm/drug effects; Computers; Cross-Sectional Studies; Female; Germany; Humans; *Light; Lighting; Male; *Photic Stimulation; *Photoperiod; Questionnaires; *Sleep/drug effects; Television; Time Factors; Video Games; *Wakefulness/drug effects  
  Abstract External zeitgebers synchronize the human circadian rhythm of sleep and wakefulness. Humans adapt their chronotype to the day-night cycle, the strongest external zeitgeber. The human circadian rhythm shifts to evening-type orientation when daylight is prolonged into the evening and night hours by artificial light sources. Data from a survey of 1507 German adolescents covering questions about chronotype and electronic screen media use combined with nocturnal satellite image data suggest a relationship between chronotype and artificial nocturnal light. Adolescents living in brightly illuminated urban districts had a stronger evening-type orientation than adolescents living in darker and more rural municipalities. This result persisted when controlling for time use of electronic screen media, intake of stimulants, type of school, age, puberty status, time of sunrise, sex, and population density. Time spent on electronic screen media use-a source of indoor light at night-is also correlated with eveningness, as well as intake of stimulants, age, and puberty status, and, to a lesser degree, type of school and time of sunrise. Adequate urban development design and parents limiting adolescents' electronic screen media use in the evening could help to adjust adolescents' zeitgeber to early school schedules when they provide appropriate lighting conditions for daytime and for nighttime.  
  Address Department of Biology, University of Education Heidelberg, Germany. vollmer@ph-heidelberg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22214237 Approved no  
  Call Number IDA @ john @ Serial 150  
Permanent link to this record
 

 
Author Wright, K.P.J.; Hull, J.T.; Czeisler, C.A. url  doi
openurl 
  Title (up) Relationship between alertness, performance, and body temperature in humans Type Journal Article
  Year 2002 Publication American Journal of Physiology. Regulatory, Integrative and Comparative Physiology Abbreviated Journal Am J Physiol Regul Integr Comp Physiol  
  Volume 283 Issue 6 Pages R1370-7  
  Keywords Human Health; Adult; Attention/*physiology; *Body Temperature; Circadian Rhythm/physiology; Cognition/*physiology; Female; Humans; Male; Memory/physiology; Reaction Time; Sleep/physiology; Time Factors; Wakefulness/physiology; NASA Discipline Regulatory Physiology; Non-NASA Center  
  Abstract Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.  
  Address Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. kenneth.wright@colorado.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0363-6119 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12388468 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 835  
Permanent link to this record
 

 
Author Rockhill, A.P.; DePerno, C.S.; Powell, R.A. url  doi
openurl 
  Title (up) The effect of illumination and time of day on movements of bobcats (Lynx rufus) Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 7 Pages e69213  
  Keywords Animals; Female; *Lighting; Lynx/*physiology; Male; Moon; Movement/*physiology; North Carolina; Time Factors; Wetlands  
  Abstract Understanding behavioral changes of prey and predators based on lunar illumination provides insight into important life history, behavioral ecology, and survival information. The objectives of this research were to determine if bobcat movement rates differed by period of day (dark, moon, crepuscular, day), lunar illumination (<10%, 10 – <50%, 50 – <90%, >90%), and moon phase (new, full). Bobcats had high movement rates during crepuscular and day periods and low movement rates during dark periods with highest nighttime rates at 10-<50% lunar illumination. Bobcats had highest movement rates during daytime when nighttime illumination was low (new moon) and higher movement rates during nighttime when lunar illumination was high (full moon). The behaviors we observed are consistent with prey availability being affected by light level and by limited vision by bobcats during darkness.  
  Address Fisheries, Wildlife, and Conservation Biology, North Carolina State University, Raleigh, North Carolina, USA. aimee_rockhill@ncsu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23861963; PMCID:PMC3704646 Approved no  
  Call Number IDA @ john @ Serial 84  
Permanent link to this record
 

 
Author Mottram, V.; Middleton, B.; Williams, P.; Arendt, J. url  doi
openurl 
  Title (up) The impact of bright artificial white and 'blue-enriched' light on sleep and circadian phase during the polar winter Type Journal Article
  Year 2011 Publication Journal of Sleep Research Abbreviated Journal J Sleep Res  
  Volume 20 Issue 1 Pt 2 Pages 154-161  
  Keywords Adult; Circadian Rhythm/*physiology; *Cold Climate; Female; Humans; *Light; Male; Medical Records; Questionnaires; Sleep/*physiology; Time Factors; blue light  
  Abstract Delayed sleep phase (and sometimes free-run) is common in the Antarctic winter (no natural sunlight) and optimizing the artificial light conditions is desirable. This project evaluated sleep when using 17,000 K blue-enriched lamps compared with standard white lamps (5000 K) for personal and communal illumination. Base personnel, 10 males, five females, 32.5+/-8 years took part in the study. From 24 March to 21 September 2006 light exposure alternated between 4-5-week periods of standard white (5000 K) and blue-enriched lamps (17,000 K), with a 3-week control before and after extra light. Sleep and light exposure were assessed by actigraphy and sleep diaries. General health (RAND 36-item questionnaire) and circadian phase (urinary 6-sulphatoxymelatonin rhythm) were evaluated at the end of each light condition. Direct comparison (rmanova) of blue-enriched light with white light showed that sleep onset was earlier by 19 min (P=0.022), and sleep latency tended to be shorter by 4 min (P=0.065) with blue-enriched light. Analysing all light conditions, control, blue and white, again provided evidence for greater efficiency of blue-enriched light compared with white (P<0.05), but with the best sleep timing, duration, efficiency and quality in control natural light conditions. Circadian phase was earlier on average in midwinter blue compared with midwinter white light by 45 min (P<0.05). Light condition had no influence on general health. We conclude that the use of blue-enriched light had some beneficial effects, notably earlier sleep, compared with standard white light during the polar winter.  
  Address British Antarctic Survey Medical Unit, Derriford Hospital, Plymouth, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1105 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20723022 Approved no  
  Call Number IDA @ john @ Serial 348  
Permanent link to this record
 

 
Author Santhi, N.; Thorne, H.C.; van der Veen, D.R.; Johnsen, S.; Mills, S.L.; Hommes, V.; Schlangen, L.J.M.; Archer, S.N.; Dijk, D.-J. url  doi
openurl 
  Title (up) The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans Type Journal Article
  Year 2012 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res  
  Volume 53 Issue 1 Pages 47-59  
  Keywords Human Health; Adult; *Circadian Clocks; Cross-Sectional Studies; Electroencephalography; Female; Humans; Male; Melatonin/*metabolism; Photic Stimulation; *Photoperiod; Rod Opsins/*metabolism; *Sleep; *Sleep Disorders, Circadian Rhythm/etiology/metabolism/physiopathology; Time Factors  
  Abstract The effect of light on circadian rhythms and sleep is mediated by a multi-component photoreceptive system of rods, cones and melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The intensity and spectral sensitivity characteristics of this system are to be fully determined. Whether the intensity and spectral composition of light exposure at home in the evening is such that it delays circadian rhythms and sleep also remains to be established. We monitored light exposure at home during 6-8wk and assessed light effects on sleep and circadian rhythms in the laboratory. Twenty-two women and men (23.1+/-4.7yr) participated in a six-way, cross-over design using polychromatic light conditions relevant to the light exposure at home, but with reduced, intermediate or enhanced efficacy with respect to the photopic and melanopsin systems. The evening rise of melatonin, sleepiness and EEG-assessed sleep onset varied significantly (P<0.01) across the light conditions, and these effects appeared to be largely mediated by the melanopsin, rather than the photopic system. Moreover, there were individual differences in the sensitivity to the disruptive effect of light on melatonin, which were robust against experimental manipulations (intra-class correlation=0.44). The data show that light at home in the evening affects circadian physiology and imply that the spectral composition of artificial light can be modified to minimize this disruptive effect on sleep and circadian rhythms. These findings have implications for our understanding of the contribution of artificial light exposure to sleep and circadian rhythm disorders such as delayed sleep phase disorder.  
  Address Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK. n.santhi@surrey.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-3098 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22017511 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 802  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: