toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dominoni, D.; Quetting, M.; Partecke, J. url  doi
openurl 
  Title Artificial light at night advances avian reproductive physiology Type Journal Article
  Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1756 Pages 20123017  
  Keywords Animals; *Lighting; Male; Molting; Photoperiod; Reproduction/*physiology; Singing; Songbirds/*physiology; Testis/anatomy & histology; Testosterone/blood; Trees  
  Abstract Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution.  
  Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78315, Germany. ddominoni@orn.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23407836; PMCID:PMC3574380 Approved no  
  Call Number IDA @ john @ Serial 50  
Permanent link to this record
 

 
Author Dominoni, D.M.; Helm, B.; Lehmann, M.; Dowse, H.B.; Partecke, J. url  doi
openurl 
  Title Clocks for the city: circadian differences between forest and city songbirds Type Journal Article
  Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1763 Pages 20130593  
  Keywords Animals; Circadian Clocks/*physiology; Circadian Rhythm; Cities; *Ecosystem; Light; Male; Songbirds/classification/*physiology; Trees; Urbanization; birds; chronotype; circadian rhythms; light at night; radio-telemetry; urbanization  
  Abstract To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.  
  Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78479, Germany. ddominoni@orn.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23740778; PMCID:PMC3774226 Approved no  
  Call Number IDA @ john @ Serial 42  
Permanent link to this record
 

 
Author Matzke, E. B. url  openurl
  Title The Effect of Street Lights in Delaying Leaf-Fall in Certain Trees Type Journal Article
  Year 1936 Publication American Journal of Botany Abbreviated Journal Amer. J. of Botany  
  Volume 23 Issue 6 Pages 446-452  
  Keywords Plants; trees; Carolina poplar; Populus canadensis; London plane; Platanus acerifolia; sycamore; Platanus occidentalis; crack willow; Salix fragilis; New York; New York City  
  Abstract Street lights in the City of New York cause a retention of the leaves of certain trees: Carolina poplar (Populus canadensis), London plane (Platanus acerifolia), sycamore (Platanus occidentalis), and crack willow (Salix fragilis). Illuminated portions of a tree retain their leaves; shaded portions of the same tree do not. One side of a tree, or the lower part, may thus have numerous leaves, while the other side, and the upper part, may be entirely devoid of foliage. A relatively weak light, at a distance of as much as 45 feet from the tip of the nearest branch, may cause retention of numerous leaves. Light intensity as low as 1 foot candle, or less, may be effective. Some leaves may be retained at least a month, others more than that, beyond the normal season. The orientation of the light with respect to the tree – i.e., north, east, south, and west – is not significant. In Populus canadensis all of the leaves ultimately fall, abscission apparently taking place at the base of the petiole. In Platanus acerifolia and Platanus occidentalis some of the leaves are retained until killed by low temperature; then some of them break off above the base of the petiole. Leaves of the Populus and Platanus species discussed remain green unusually long when receiving additional illumination. Leaves of these same trees do not emerge from the buds earlier in the spring as a result of the additional illumination.  
  Address n/a  
  Corporate Author Thesis  
  Publisher JSTOR Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9122 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1394  
Permanent link to this record
 

 
Author Straka,T. M., Wolf, M., Gras, P., Buchholz, S., & Voigt, C. C. doi  openurl
  Title Tree Cover Mediates the Effect of Artificial Light on Urban Bats Type Journal Article
  Year 2019 Publication Frontiers in Ecology and Evolution Abbreviated Journal  
  Volume 7 Issue Pages 91  
  Keywords Animals; ALAN; bats; canopy cover; chiroptera; light-emitting diodes; LED; trees; Ultraviolet; urban  
  Abstract With urban areas growing worldwide, so does artificial light at night (ALAN) which negatively affects many nocturnal animals, including bats. The response of bats to ALAN ranges from some opportunistic species taking advantage of insect aggregations around street lamps, particularly those emitting ultraviolet (UV) light, to others avoiding lit areas at all. Tree cover has been suggested to mitigate the negative effects of ALAN on bats by shielding areas against light scatter. Here, we investigated the effect of tree cover on the relationship between ALAN and bats in Berlin, Germany. In particular, we asked if this interaction varies with the UV light spectrum of street lamps and also across urban bat species. We expected trees next to street lamps to block ALAN, making the adjacent habitat more suitable for all species, irrespective of the wavelength spectrum of the light source. Additionally, we expected UV emitting lights next to trees to attract insects and thus, opportunistic bats. In summer 2017, we recorded bat activity at 22 green open spaces in Berlin using automated ultrasonic detectors. We analyzed bat activity patterns and landscape variables (number of street lamps with and without UV light emission, an estimate of light pollution, and tree cover density around each recording site within different spatial scales) using generalized linear mixed-effects models with a negative binomial distribution. We found a species-specific response of bats to street lamps with and without UV light, providing a more detailed picture of ALAN impacts than simply total light radiance. Moreover, we found that dense tree cover dampened the negative effect of street lamps without UV for open-space foraging bats of the genera Nyctalus, Eptesicus, and Vespertilio, yet it amplified the already existing negative or positive effect of street lamps with or without UV on Pipistrellus pipistrellus, P. pygmaeus, and Myotis spp. Our study underpins the importance of minimizing artificial light at night close to vegetation, particularly for bats adapted to spatial complexity in the environment (i.e., clutter-adapted species), and to increase dense vegetation in urban landscape to provide, besides roosting opportunities, protection against ALAN for open-space foraging bats in city landscapes.  
  Address Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2302  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: