|   | 
Details
   web
Records
Author Ouyang, J.Q.; Davies, S.; Dominoni, D.
Title Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function Type Journal Article
Year 2018 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 221 Issue Pt 6 Pages
Keywords (up) Human Health; Alan; Glucocorticoid; Hormones; Light pollution; Melatonin; Metabolism; Sleep; Stress; Thyroid; Urban ecology
Abstract Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.
Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:29545373 Approved no
Call Number IDA @ john @ Serial 1817
Permanent link to this record
 

 
Author Henn, M.; Nichols, H.; Zhang, Y.; Bonner, T.H.
Title Effect of artificial light on the drift of aquatic insects in urban central Texas streams Type Journal Article
Year 2014 Publication Journal of Freshwater Ecology Abbreviated Journal Journal of Freshwater Ecology
Volume 29 Issue 3 Pages 307-318
Keywords (up) light pollution; stream ecology; urban ecology; drift; abiotic factors; Baetidae; Chironomidae; insects; Texas; Simuliidae; Edwards Plateau; light at night; ecology
Abstract Light pollution can reduce night time drift of larval aquatic insects in urban streams by disrupting their circadian rhythms. Previous studies on larval insect drift show that disruption in drift leads to changes in reproduction as well as intraspecific and interspecific interactions. The purpose of this study was to conduct a preliminary investigation into the effects of extreme artificial light on insect drift in urbanized, high clarity spring systems of the karst Edwards Plateau, TX. We quantified taxa richness, diversity, and abundance in aquatic insect night time drift under two treatments (ambient night time light and artificial light addition) and among five streams using a paired design. Richness and diversity of drifting aquatic insects were similar between treatments but abundance was 37% less in the light addition treatment than that of the control. Effects of light addition on mean abundance was more notable in large streams with a 58% decrease in Simuliidae (compared to that of the control) and 51% decrease in Baetidae. Reduced drift from light addition suggests the potential of artificial lighting disrupting insect drift and consequently community structure. Results of this experiment support a growing body of knowledge on how urbanized systems influence stream communities.
Address Department of Biology/Aquatic Station, Texas State University, San Marcos, TX, USA
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0270-5060 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 312
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Inger, R.; Gaston, K.J.; Chisholm, R.
Title Mapping artificial lightscapes for ecological studies Type Journal Article
Year 2014 Publication Methods in Ecology and Evolution Abbreviated Journal Methods Ecol Evol
Volume 5 Issue 6 Pages 534-540
Keywords (up) light pollution; urban ecology; landscape ecology; diurnal; nocturnal; night; light
Abstract Artificial illumination of the night is increasing globally. There is growing evidence of a range of ecological impacts of artificial light and awareness of light pollution as a significant environmental issue. In urban and suburban areas, complex spatial patterns of light sources, structures and vegetation create a highly heterogeneous night-time light environment for plants and animals.

We developed a method for modelling the night-time light environment at a high spatial resolution in a small urban area for ecological studies. We used the position and height of street lights, and digital terrain and surface models, to predict the direct light intensity at different wavelengths at different heights above the ground surface.

Validation against field measurements of night-time light showed that modelled light intensities in the visible and ultraviolet portions of the spectrum were accurate.

We show how this model can be used to map biologically relevant lightscapes across an urban landscape. We also illustrate the utility of the model using night-time light maps as resistance surfaces in the software package circuitscape to predict potential movement of model nocturnal species between habitat patches and to identify key corridors and barriers to movement and dispersal.

Understanding the ecological effects of artificial light requires knowledge of the light environment experienced by organisms throughout the diurnal and annual cycles, during periods of activity and rest and during different life stages. Our approach to high-resolution mapping of artificial lightscapes can be adapted to the sensitivity to light of different species and to other urban, suburban, rural and industrial landscapes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041210X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 171
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J.
Title Ecological effects of artificial light at night on wild plants Type Journal Article
Year 2016 Publication Journal of Ecology Abbreviated Journal J Ecol
Volume 104 Issue 3 Pages 611-620
Keywords (up) Plants; wild plants; photobiology; Circadian; Ecophysiology; light cycles; light pollution; photoperiodism; photopollution; physiology; sky glow; urban ecology
Abstract 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.

2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation.

3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems.

4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem.
Address Environment and Sustainability Institute, University of Exeter, Penryn, United Kimgdom; j.j.bennie(at)exeter.ac.uk
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0477 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1350
Permanent link to this record
 

 
Author Xue, X.; Lin, Y.; Zheng, Q.; Wang, K.; Zhang, J.; Deng, J.; Abubakar, G.A.; Gan, M.
Title Mapping the fine-scale spatial pattern of artificial light pollution at night in urban environments from the perspective of bird habitats Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume 702 Issue Pages 134725
Keywords (up) Remote Sensing; Animals; ALAN pollution; Circuitscape; Land cover; Nighttime light image; Urban ecology
Abstract The increase in artificial light at night (ALAN) is a global concern, while the pattern of ALAN pollution inside urban areas has not yet been fully explored. To fill this gap, we developed a novel method to map fine-scale ALAN pollution patterns in urban bird habitats using high spatial resolution ALAN satellite data. First, an ALAN pollution map was derived from JL1-3B satellite images. Then, the core habitat nodes (CHNs) representing the main habitats for urban birds to inhabit were identified from the land cover map, which was produced using Gaofen2 (GF2) data, and the high probability corridors (HPCs), indicating high connectivity paths, were derived from Circuitscape software. Finally, the ALAN patterns in the CHNs and HPCs were analysed, and the mismatch index was proposed to evaluate the trade-off between human activity ALAN demands and ALAN supply for the protection of urban birds. The results demonstrated that 115 woodland patches covering 4149.0ha were selected as CHNs, and most of the CHNs were large urban parks or scenic spots located in the urban fringe. The 2923 modelled HPCs occupying 1179.2ha were small remaining vegetation patches and vegetated corridors along the major transport arteries. The differences in the ALAN pollution patterns between CHNs and HPCs were mainly determined by the characteristics of the green space patches and the light source types. The polluted regions in the CHNs were clustered in a few regions that suffered from concentrated and intensive ALAN, while most of the CHNs remained unaffected. In contrast, the 727 HPCs were mainly polluted by street lighting was scattered and widely distributed, resulting a more varying influence to birds than that in the CHNs. Relating patterns of the ALAN to bird habitats and connectivity provides meaningful information for comprehensive planning to alleviate the disruptive effects of ALAN pollution.
Address College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. Electronic address: ganmuye@zju.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:31734607 Approved no
Call Number GFZ @ kyba @ Serial 2765
Permanent link to this record