|   | 
Author (up) Dominoni, D.M.; Carmona-Wagner, E.O.; Hofmann, M.; Kranstauber, B.; Partecke, J.
Title Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds Type Journal Article
Year 2014 Publication Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 83 Issue 3 Pages 681–692
Keywords Animals; Biological rhythms; light at night; light loggers; light pollution; night shift; noise; radiotelemetry; sleep disruption; temporal niche; urban sprawl
Abstract Summary

The growing interest in the effects of light pollution on daily and seasonal cycles of animals has led to a boost of research in recent years. In birds, it has been hypothesized that artificial light at night can affect daily aspects of behaviour, but one caveat is the lack of knowledge about the light intensity that wild animals, such as birds, are exposed to during the night.

Organisms have naturally evolved daily rhythms to adapt to the 24-h cycle of day and night, thus, it is important to investigate the potential shifts in daily cycles due to global anthropogenic processes such as urbanization.

We captured adult male European blackbirds (Turdus merula) in one rural forest and two urban sites differing in the degree of anthropogenic disturbance. We tagged these birds with light loggers and simultaneously recorded changes in activity status (active/non-active) through an automated telemetry system. We first analysed the relationship between light at night, weather conditions and date with daily activity onset and end. We then compared activity, light at night exposure and noise levels between weekdays and weekends.

Onset of daily activity was significantly advanced in both urban sites compared to the rural population, while end of daily activity did not vary either among sites. Birds exposed to higher amounts of light in the late night showed earlier onset of activity in the morning, but light at night did not influence end of daily activity. Light exposure at night and onset/end of daily activity timing was not different between weekdays and weekends, but all noise variables were. A strong seasonal effect was detected in both urban and rural populations, such as birds tended to be active earlier in the morning and later in the evening (relative to civil twilight) in the early breeding season than at later stages.

Our results point at artificial light at night as a major driver of change in timing of daily activity. Future research should focus on the costs and benefits of altered daily rhythmicity in birds thriving in urban areas.
Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315, Radolfzell, Germany; Department of Biology, University of Konstanz, Universitatsstrasse 10, 78464, Konstanz, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:24102250 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 375
Permanent link to this record

Author (up) Sutton, P.C.
Title A scale-adjusted measure of “Urban sprawl” using nighttime satellite imagery Type Journal Article
Year 2003 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 86 Issue 3 Pages 353-369
Keywords Urban sprawl; Sprawl Line; Nighttime satellite imagery; DMSP-OLS; remote sensing; satellite; llight at night
Abstract “Urban Sprawl” is a growing concern of citizens, environmental organizations, and governments. Negative impacts often attributed to urban sprawl are traffic congestion, loss of open space, and increased pollutant runoff into natural waterways. Definitions of “Urban Sprawl” range from local patterns of land use and development to aggregate measures of per capita land consumption for given contiguous urban areas (UA). This research creates a measure of per capita land use consumption as an aggregate index for the spatially contiguous urban areas of the conterminous United States with population of 50,000 or greater. Nighttime satellite imagery obtained by the Defense Meteorological Satellite Program's Operational Linescan System (DMSP OLS) is used as a proxy measure of urban extent. The corresponding population of these urban areas is derived from a grid of the block group level data from the 1990 U.S. Census. These numbers are used to develop a regression equation between Ln(Urban Area) and Ln(Urban Population). The ‘scale-adjustment’ mentioned in the title characterizes the “Urban Sprawl” of each of the urban areas by how far above or below they are on the “Sprawl Line” determined by this regression. This “Sprawl Line” allows for a more fair comparison of “Urban Sprawl” between larger and smaller metropolitan areas because a simple measure of per capita land consumption or population density does not account for the natural increase in aggregate population density that occurs as cities grow in population. Cities that have more “Urban Sprawl” by this measure tended to be inland and Midwestern cities such as Minneapolis–St. Paul, Atlanta, Dallas–Ft. Worth, St. Louis, and Kansas City. Surprisingly, west coast cities including Los Angeles had some of the lowest levels of “Urban Sprawl” by this measure. There were many low light levels seen in the nighttime imagery around these major urban areas that were not included in either of the two definitions of urban extent used in this study. These areas may represent a growing commuter-shed of urban workers who do not live in the urban core but nonetheless contribute to many of the impacts typically attributed to “Urban Sprawl”. “Urban Sprawl” is difficult to define precisely partly because public perception of sprawl is likely derived from local land use planning decisions, spatio-demographic change in growing urban areas, and changing values and social mores resulting from differential rates of international migration to the urban areas of the United States. Nonetheless, the aggregate measures derived here are somewhat different than similar previously used measures in that they are ‘scale-adjusted’; also, the spatial patterns of “Urban Sprawl” shown here shed some insight and raise interesting questions about how the dynamics of “Urban Sprawl” are changing.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 233
Permanent link to this record