|   | 
Details
   web
Records
Author (up) Ban, Y.; Cao, C.; Shao, X.
Title Assessment of scan-angle dependent radiometric bias of Suomi-NPP VIIRS day/night band from night light point source observations Type Journal Article
Year 2015 Publication Proc. SPIE 9607, Earth Observing Systems XX, 2015 Abbreviated Journal
Volume Issue Pages 960727
Keywords Remote sensing; Suomi NPP; VIIRS DNB; calibration
Abstract The low gain stage of VIIRS Day/Night Band (DNB) on Suomi-NPP is calibrated using onboard solar diffuser. The calibration is then transferred to the high gain stage of DNB based on the gain ratio determined from data collected along solar terminator region. The calibration transfer causes increase of uncertainties and affects the accuracy of the low light radiances observed by DNB at night. Since there are 32 aggregation zones from nadir to the edge of the scan and each zone has its own calibration, the calibration versus scan angle of DNB needs to be independently assessed. This study presents preliminary analysis of the scan-angle dependence of the light intensity from bridge lights, oil platforms, power plants, and flares observed by VIIRS DNB since 2014. Effects of atmospheric path length associated with scan angle are analyzed. In addition, other effects such as light changes at the time of observation are also discussed. The methodology developed will be especially useful for JPSS J1 VIIRS due to the nonlinearity effects at high scan angles, and the modification of geolocation software code for different aggregation modes. It is known that J1 VIIRS DNB has large nonlinearity across aggregation zones, and requires new aggregation modes, as well as more comprehensive validation.
Address Univ. of Maryland, College Park, USA
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1259
Permanent link to this record
 

 
Author (up) Cao, C.; Bai, Y.
Title Quantitative Analysis of VIIRS DNB Nightlight Point Source for Light Power Estimation and Stability Monitoring Type Journal Article
Year 2014 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 6 Issue 12 Pages 11915-11935
Keywords Remote Sensing; light pollution; skyglow; VIIRS; VIIRS DNB; Suomi NPP; radiometry; radiative transfer; modelling
Abstract The high sensitivity and advanced onboard calibration on the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) enables accurate measurements of low light radiances which leads to enhanced quantitative applications at night. The finer spatial resolution of DNB also allows users to examine social economic activities at urban scales. Given the growing interest in the use of the DNB data, there is a pressing need for better understanding of the calibration stability and absolute accuracy of the DNB at low radiances. The low light calibration accuracy was previously estimated at a moderate 15% using extended sources while the long-term stability has yet to be characterized. There are also several science related questions to be answered, for example, how the Earth’s atmosphere and surface variability contribute to the stability of the DNB measured radiances; how to separate them from instrument calibration stability; whether or not SI (International System of Units) traceable active light sources can be designed and installed at selected sites to monitor the calibration stability, radiometric and geolocation accuracy, and point spread functions of the DNB; furthermore, whether or not such active light sources can be used for detecting environmental changes, such as aerosols. This paper explores the quantitative analysis of nightlight point sources, such as those from fishing vessels, bridges, and cities, using fundamental radiometry and radiative transfer, which would be useful for a number of applications including search and rescue in severe weather events, as well as calibration/validation of the DNB. Time series of the bridge light data are used to assess the stability of the light measurements and the calibration of VIIRS DNB. It was found that the light radiant power computed from the VIIRS DNB data matched relatively well with independent assessments based on the in situ light installations, although estimates have to be made due to limited ground truth data and lack of suitable radiative transfer models. Results from time series analysis are encouraging in potentially being able to detect anomalies in the DNB calibration. The study also suggests that accurate ground based active lights, when properly designed and installed, can be used to monitor the stability of the VIIRS DNB calibration at near the specified minimum radiances (3 nW/cm^2/sr), and potentially can be used to monitor the environmental changes as well.
Address NOAA (National Oceanic and Atmospheric Administration)/NESDIS (National Environmental Satellite, Data, and Information Service)/STAR (Center for Satellite Applications and Research), NCWCP, E/RA2, 5830 University Research Ct., Suite 2838, College Park, MD 20740, USA; Changyong.Cao@noaa.gov
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1154
Permanent link to this record
 

 
Author (up) Cao, C.; Zong, Y.; Bai, Y.; Shao, X.
Title Preliminary study for improving the VIIRS DNB low light calibration accuracy with ground based active light source Type Journal Article
Year 2015 Publication Proc. SPIE 9607, Earth Observing Systems XX, 2015 Abbreviated Journal
Volume Issue Pages 96070D
Keywords Remote sensing; Suomi NPP; VIIRS DNB; calibration
Abstract There is a growing interest in the science and user community in the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) low light detection capabilities at night for quantitative applications such as airglow, geophysical retrievals under lunar illumination, light power estimation, search and rescue, energy use, urban expansion and other human activities. Given the growing interest in the use of the DNB data, a pressing need arises for improving the calibration stability and absolute accuracy of the DNB at low radiances. Currently the low light calibration accuracy was estimated at a moderate 15%-100% while the long-term stability has yet to be characterized. This study investigates selected existing night light point sources from Suomi NPP DNB observations and evaluates the feasibility of SI traceable nightlight source at radiance levels near 3 nW·cm−2·sr−1, that potentially can be installed at selected sites for VIIRS DNB calibration/validation. The illumination geometry, surrounding environment, as well as atmospheric effects are also discussed. The uncertainties of the ground based light source are estimated. This study will contribute to the understanding of how the Earth’s atmosphere and surface variability contribute to the stability of the DNB measured radiances, and how to separate them from instrument calibration stability. It presents the need for SI traceable active light sources to monitor the calibration stability, radiometric and geolocation accuracy, and point spread functions of the DNB. Finally, it is also hoped to address whether or not active light sources can be used for detecting environmental changes, such as aerosols.
Address NESDIS/STAR, National Oceanic and Atmospheric Administration, USA
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1261
Permanent link to this record
 

 
Author (up) Chen, H.; Sun, C.; Chen, X.; Chiang, K.; Xiong, X.
Title On-orbit calibration and performance of S-NPP VIIRS DNB Type Conference Article
Year 2016 Publication Proc. SPIE 9881, Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV, 98812B (May 2, 2016) Abbreviated Journal Proc. SPIE 9881
Volume Issue Pages
Keywords Remote Sensing; VIIRS, Suomi; VIIRS DNB; day-night band; calibration; Land Science Investigator-led Processing Systems; SIPS; Orbital dynamics; Sensors; Stray light; Contamination; Diffusers; Earth sciences; Equipment and services
Abstract The S-NPP VIIRS instrument has successfully operated since its launch in October 2011. The VIIRS Day-Night Band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 μm that is capable of observing Earth scenes during both day and nighttime orbits at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low, mid, or high gain stages, and it uses an onboard solar diffuser (SD) for its low gain stage calibration. The SD observations also provide a means to compute gain ratios of low-to-mid and mid-to-high gain stages. This paper describes the DNB on-orbit calibration methodologies used by the VIIRS Characterization Support Team (VCST) in supporting the NASA earth science community with consistent VIIRS sensor data records (SDRs) made available by the Land Science Investigator-led Processing Systems (SIPS). It provides an assessment and update of DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, stray light contamination and its correction. Also presented in this paper are performance validations based on earth scenes and lunar observations.
Address Science Systems and Applications, Inc.
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1473
Permanent link to this record
 

 
Author (up) Fulbright, J.P.; Xiong, X.
Title Suomi-NPP VIIRS day/night band calibration with stars Type Journal Article
Year 2015 Publication Proc. SPIE 9607, Earth Observing Systems XX, 2015 Abbreviated Journal
Volume Issue Pages 96071S
Keywords Remote Sensing; Suomi NPP; VIIRS DNB; calibration
Abstract Observations of stars can be used to calibrate the radiometric performance of the Day/Night Band (DNB) of the Suomi-NPP instrument VIIRS. Bright stars are normally visible in the Space View window. In this paper, we describe several potential applications of stellar observations with preliminary results for several. These applications include routine trending of the gain of the highand mid-gain stages of the DNB and trending the gain ratio between those stages. Many of the stars observed by the VIIRS DNB have absolute flux curves available, allowing for an absolute calibration. Additionally, stars are visible during scheduled lunar roll observations. The electronic sector rotations applied during the scheduled lunar observations greatly increases the sky area recorded for a brief period, increasing the observing opportunities. Additionally, the DNB recorded data during the spacecraft pitch maneuver. This means the deep sky was viewed through the full Earth View. In this situation, thousands of stars (and the planet Mars) are recorded over a very short time period and over all aggregation zones. A possible application would be to create a gain curve by comparing the instrument response to the known apparent stellar brightness for a large number of stars of similar spectral shape. Finally, the DNB is especially affected the mirror degradation afflicting VIIRS. The degradation has shifted peak of the relative spectral response (RSR) of the DNB the blue and the effective band pass has been slightly reduced. The change in response for hot stars (effective temperatures of over 30,000 K) due to this degradation will differ by about 10 percent from the response change of cool stars (below 3500 K).
Address Science Systems and Applications, Inc., USA
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1260
Permanent link to this record