|   | 
Details
   web
Records
Author (down) Yadav, G.; Malik, S.; Rani, S.; Kumar, V.
Title Role of light wavelengths in synchronization of circadian physiology in songbirds Type Journal Article
Year 2014 Publication Physiology & Behavior Abbreviated Journal Physiol Behav
Volume Issue Pages
Keywords Activity; Animals; Bunting; Cortisol; Light wavelength; Melatonin; Weaver bird
Abstract This study investigated whether at identical duration and equal energy level birds presented with short (450nm; blue, B) and long (640nm; red, R) light wavelengths would differentially interpret them and exhibit wavelength-dependent circadian behavioral and physiological responses, despite the difference in their breeding latitudes. Temperate migratory blackheaded buntings (Emberiza melanocephala) and subtropical non-migratory Indian weaverbirds (Ploceus philippinus) initially entrained to 12h light:12h darkness (12L:12D; L=0.33muM/m2/s, D=0muM/m2/s) in two groups of each, groups 1 and 2, were subjected to constant light (LL, 0.33muM/m2/s), which rendered them arrhythmic in the activity behavior. They were then exposed for about two weeks each to 12B:12R and 12R:12B (group 1) or 12R:12B and 12B:12R (group 2) at 0.33muM/m2/s light energy level. Blue and red light periods were interpreted as the day and night, respectively, with activity and no-activity in non-migratory weaverbirds or activity and intense activity (Zugunruhe, migratory night restlessness) in the migratory buntings. Consistent with this, plasma melatonin levels under B:R, not R:B, light cycle were low and high in blue and red light periods, respectively. A similar diurnal pattern was absent in the cortisol levels, however. These results show an important role of light wavelengths in synchronization of the circadian clock governed behavior and physiology to the photoperiodic environment, and suggest that photoperiodic timing might be a conserved physiological adaptation in many more birds, regardless of the difference in breeding latitudes, than has been generally envisaged.
Address DST-IRHPA Centre for Excellence in Biological Rhythms Research, Department of Zoology, University of Delhi, Delhi 110 007, India. Electronic address: drvkumar11@yahoo.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9384 ISBN Medium
Area Expedition Conference
Notes PMID:25536387 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1080
Permanent link to this record
 

 
Author (down) Ruger, M.; St Hilaire, M.A.; Brainard, G.C.; Khalsa, S.-B.S.; Kronauer, R.E.; Czeisler, C.A.; Lockley, S.W.
Title Human phase response curve to a single 6.5 h pulse of short-wavelength light Type Journal Article
Year 2013 Publication The Journal of Physiology Abbreviated Journal J Physiol
Volume 591 Issue Pt 1 Pages 353-363
Keywords Adolescent; Adult; Body Temperature; Circadian Rhythm/*physiology; Female; Humans; *Light; Male; Melatonin/physiology; Young Adult; blue light; melatonin; photic response; whort-wavelength
Abstract The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a phase response curve (PRC). Previous PRCs in humans have utilized high-intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18-30 years) were studied for 9-10 days in a time-free environment. The protocol included three baseline days followed by a constant routine (CR) to assess initial circadian phase. Following this CR, participants were exposed to a 6.5 h 480 nm light exposure (11.8 muW cm(-2), 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in dim light melatonin onset (DLMO) between CRs. Exposure to 6.5 h of 480 nm light resets the circadian pacemaker according to a conventional type 1 PRC with fitted maximum delays and advances of -2.6 h and 1.3 h, respectively. The 480 nm PRC induced approximately 75% of the response of the 10,000 lux white light PRC. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure.
Address Circadian Physiology Program, Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA. mrueger@rics.bwh.harvard.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3751 ISBN Medium
Area Expedition Conference
Notes PMID:23090946; PMCID:PMC3630790 Approved no
Call Number IDA @ john @ Serial 239
Permanent link to this record
 

 
Author (down) Leskey, T.; Lee, D.-H.; Glenn, D.; Morrison, W.
Title Behavioral Responses of the Invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) to Light-Based Stimuli in the Laboratory and Field Type Journal Article
Year 2015 Publication Journal of Insect Behavior Abbreviated Journal J. of Insect Behav.
Volume 28 Issue 6 Pages 674-692
Keywords Animals; Brown marmorated stink bug; light trap; visual ecology; IPM; wavelength; Halyomorpha halys; invasive species
Abstract Halyomorpha halys (Stål), brown marmorated stink bug, is an invasive insect native to Asia that was accidentally introduced into the United States. The species is a polyphagous pest that has caused serious economic injury to specialty and row crops in the mid-Atlantic region. Growers have targeted H. halys with broad-spectrum materials by increasing the number of and decreasing the interval between insecticide applications. While it is known that adults reliably respond to semiochemical cues, much less is known about the response of H. halys to visual stimuli. Field observations suggest that H. halys adults respond to light-based stimuli, with large aggregations of adults documented at outdoor light sources and captured in commercial blacklight traps. Therefore, we conducted a series of studies aimed at identifying optimal wavelengths and intensities of light attractive to H. halys adults. We found that intensity and wavelength of light affected H. halys response in the laboratory and field. In the laboratory, H. halys demonstrated positive phototactic responses to full-spectrum and wavelength-restricted stimuli at a range of intensities, though the levels of stimulus acceptance and attraction, respectively, changed according to intensity. The species is most attracted to white, blue and black (ultraviolet) wavelength-restricted stimuli in the laboratory and field. In the field, traps baited with blue light sources were less attractive to non-target insect species, but white light sources were more attractive to H. halys indicating that these two light sources may be good candidates for inclusion in light-based monitoring traps.
Address USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430-2771, USA; tracy.leskey(at)ars.usda.gov
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-7553 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1300
Permanent link to this record
 

 
Author (down) Keshet-Sitton, A.; Or-Chen, K.; Yitzhak, S.; Tzabary, I.; Haim, A.
Title Can Avoiding Light at Night Reduce the Risk of Breast Cancer? Type Journal Article
Year 2015 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther
Volume 15 Issue 2 Pages 145-152
Keywords Human Health; artificial light at night; breast cancer; latency period; rural; short wavelength illumination; urban; oncogenesis; oncology; epidemiology
Abstract Excessive exposure to artificial light at night (ALAN) suppresses nocturnal melatonin (MLT) production in the pineal gland and is, therefore, associated with an increased risk of breast cancer (BC). We examined indoor and outdoor light habits of 278 women, BC patients (n = 93), and controls (n = 185; 2010-2014). Cases and controls were age and residential area matched. Data regarding behavior in the sleeping habitat in a 5-year period, 10 to 15 years prior to disease diagnosis, were collected using a questionnaire. Sleep quality, bedtime, sleep duration, TV watching habits, presleeping reading habits, subjective illumination intensity, and type of illumination were collected. Binary logistic regression models were used to calculate odds ratios with 95% confidence intervals (ORs with 95% CIs) for BC patients in relation to those habits. OR results revealed that women who had slept longer (controls), 10 to 15 years before the time of the study, in a period of 5 years, had a significant (OR = 0.74; 95% CI = 0.57-0.97; P < .03) reduced BC risk. Likewise, women who had been moderately exposed to ALAN as a result of reading using bed light (reading lamp) illumination and women who had slept with closed shutters reduced their BC risk: OR = 0.81, 95% CI = 0.67-0.97, P < .02, and OR = 0.82, 95% CI = 0.68-0.99, P < .04, respectively. However, women who had been exposed to ALAN as a result of living near strong illumination sources were at a significantly higher BC risk (OR = 1.52; 95% CI = 1.10-2.12; P < .01). These data support the hypothesis that diminishing nighttime light exposure will diminish BC risk and incidence. This hypothesis needs to be tested directly using available testing strategies and technologies that continuously measure an individual's light exposure, its timing, and sleep length longitudinally and feed this information back to the individual, so that BC risk can be distinguished prospectively.
Address Atalya Keshet-Sitton, Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, Mount Carmel, Haifa 31905, Israel. atalyaks(at)gmail.com
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7354 ISBN Medium
Area Expedition Conference
Notes PMID:26631258 Approved no
Call Number IDA @ john @ Serial 1314
Permanent link to this record
 

 
Author (down) Johansen, N.S.; Vänninen, I.; Pinto, D.M.; Nissinen, A.I.; Shipp, L.
Title In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops Type Journal Article
Year 2011 Publication Annals of Applied Biology Abbreviated Journal
Volume 159 Issue 1 Pages 1-27
Keywords Behaviour; biology; insects; light intensity; mites; photobiology; photoperiod; photoreceptors; plant protection; visual ecology; wavelength distribution
Abstract Novel lighting technology offers the possibility of improved arthropod integrated pest management (IPM) in artificially lighted crops. This review compiles the current knowledge on how greenhouse pest and beneficial arthropods are directly affected by light, with the focus on whiteflies. The effect of ultraviolet depletion on orientation and colour-coded phototaxis are to some extent studied and utilised for control of the flying adult stage of some pest species, but far less is known about the visual ecology of commercially used biological control agents and pollinators, and about how light affects arthropod biology in different life stages. Four approaches for utilisation of artificial light in IPM of whiteflies are suggested: (a) use of attractive visual stimuli incorporated into traps for monitoring and direct control, (b) use of visual stimuli that disrupt the host-detection process, (c) radiation with harmful or inhibitory wavelengths to kill or suppress pest populations and (d) use of time cues to manipulate daily rhythms and photoperiodic responses. Knowledge gaps are identified to design a road map for research on IPM in crops lighted with high-pressure sodium lamps, light-emitting diodes (LEDs) and photoselective films. LEDs are concluded to offer possibilities for behavioural manipulation of arthropods, but the extent of such possibilities depends in practice on which wavelength combinations are determined to be optimal for plant production. Furthermore, the direct effects of artificial lighting on IPM must be studied in the context of plant-mediated effects of artificial light on arthropods, as both types of manipulations are possible, particularly with LEDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-4746 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 112
Permanent link to this record