toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bedrosian, T.A.; Fonken, L.K.; Walton, J.C.; Nelson, R.J. url  doi
openurl 
  Title Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters Type Journal Article
  Year 2011 Publication Biology Letters Abbreviated Journal Biol Lett  
  Volume (down) 7 Issue 3 Pages 468-471  
  Keywords Animals; Blood Bactericidal Activity/immunology; Circadian Rhythm; Cricetinae; Fever/immunology; Hypersensitivity, Delayed/immunology; *Immunity; Light/*adverse effects; Lipopolysaccharides; Locomotion; Phodopus/*immunology  
  Abstract Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.  
  Address Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA. tracy.bedrosian@osumc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-9561 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21270021; PMCID:PMC3097873 Approved no  
  Call Number IDA @ john @ Serial 90  
Permanent link to this record
 

 
Author Yadav, G.; Malik, S.; Rani, S.; Kumar, V. url  doi
openurl 
  Title Role of light wavelengths in synchronization of circadian physiology in songbirds Type Journal Article
  Year 2014 Publication Physiology & Behavior Abbreviated Journal Physiol Behav  
  Volume (down) Issue Pages  
  Keywords Activity; Animals; Bunting; Cortisol; Light wavelength; Melatonin; Weaver bird  
  Abstract This study investigated whether at identical duration and equal energy level birds presented with short (450nm; blue, B) and long (640nm; red, R) light wavelengths would differentially interpret them and exhibit wavelength-dependent circadian behavioral and physiological responses, despite the difference in their breeding latitudes. Temperate migratory blackheaded buntings (Emberiza melanocephala) and subtropical non-migratory Indian weaverbirds (Ploceus philippinus) initially entrained to 12h light:12h darkness (12L:12D; L=0.33muM/m2/s, D=0muM/m2/s) in two groups of each, groups 1 and 2, were subjected to constant light (LL, 0.33muM/m2/s), which rendered them arrhythmic in the activity behavior. They were then exposed for about two weeks each to 12B:12R and 12R:12B (group 1) or 12R:12B and 12B:12R (group 2) at 0.33muM/m2/s light energy level. Blue and red light periods were interpreted as the day and night, respectively, with activity and no-activity in non-migratory weaverbirds or activity and intense activity (Zugunruhe, migratory night restlessness) in the migratory buntings. Consistent with this, plasma melatonin levels under B:R, not R:B, light cycle were low and high in blue and red light periods, respectively. A similar diurnal pattern was absent in the cortisol levels, however. These results show an important role of light wavelengths in synchronization of the circadian clock governed behavior and physiology to the photoperiodic environment, and suggest that photoperiodic timing might be a conserved physiological adaptation in many more birds, regardless of the difference in breeding latitudes, than has been generally envisaged.  
  Address DST-IRHPA Centre for Excellence in Biological Rhythms Research, Department of Zoology, University of Delhi, Delhi 110 007, India. Electronic address: drvkumar11@yahoo.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25536387 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1080  
Permanent link to this record
 

 
Author Maroni, M.J.; Capri, K.M.; Arruda, N.L.; Gelineau, R.R.; Deane, H.V.; Concepcion, H.A.; DeCourcey, H.; Monteiro De Pina, I.K.; Cushman, A.V.; Chasse, M.H.; Logan, R.W.; Seggio, J.A. url  doi
openurl 
  Title Substrain specific behavioral responses in male C57BL/6N and C57BL/6J mice to a shortened 21-hour day and high-fat diet Type Journal Article
  Year 2020 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume (down) in press Issue Pages  
  Keywords Animals; Mouse; circadian; high-fat diet; locomotor activity; photoperiod; strain differences  
  Abstract Altered circadian rhythms have negative consequences on health and behavior. Emerging evidence suggests genetics influences the physiological and behavioral responses to circadian disruption. We investigated the effects of a 21 h day (T = 21 cycle), with high-fat diet consumption, on locomotor activity, explorative behaviors, and health in male C57BL/6J and C57BL/6N mice. Mice were exposed to either a T = 24 or T = 21 cycle and given standard rodent chow (RC) or a 60% high-fat diet (HFD) followed by behavioral assays and physiological measures. We uncovered numerous strain differences within the behavioral and physiological assays, mainly that C57BL/6J mice exhibit reduced susceptibility to the obesogenic effects of (HFD) and anxiety-like behavior as well as increased circadian and novelty-induced locomotor activity compared to C57BL/6N mice. There were also substrain-specific differences in behavioral responses to the T = 21 cycle, including exploratory behaviors and circadian locomotor activity. Under the 21-h day, mice consuming RC displayed entrainment, while mice exposed to HFD exhibited a lengthening of activity rhythms. In the open-field and light-dark box, mice exposed to the T = 21 cycle had increased novelty-induced locomotor activity with no further effects of diet, suggesting daylength may affect mood-related behaviors. These results indicate that different circadian cycles impact metabolic and behavioral responses depending on genetic background, and despite circadian entrainment.  
  Address Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32400203 Approved no  
  Call Number GFZ @ kyba @ Serial 2919  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: