toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kim, Y.J.; Lee, E.; Lee, H.S.; Kim, M.; Park, M.S. url  doi
openurl 
  Title High prevalence of breast cancer in light polluted areas in urban and rural regions of South Korea: An ecologic study on the treatment prevalence of female cancers based on National Health Insurance data Type Journal Article
  Year 2015 Publication Chronobiology International Abbreviated Journal (up) Chronobiol Int  
  Volume 32 Issue 5 Pages 657-667  
  Keywords Human Health; Artificial light at night; breast cancer; generalized poisson distribution; light pollution; treatment prevalence  
  Abstract It has been reported that excessive artificial light at night (ALAN) could harm human health since it disturbs the natural bio-rhythm and sleep. Such conditions can lead to various diseases, including cancer. In this study, we have evaluated the association between ALAN and prevalence rates of cancer in females on a regional basis, after adjusting for other risk factors, including obesity, smoking, alcohol consumption rates and PM10 levels. The prevalence rates for breast cancer were found to be significantly associated with ALAN in urban and rural areas. Furthermore, no association was found with ALAN in female lung, liver, cervical, gastric and colon cancer. Despite the limitations of performing ecological studies, this report suggests that ALAN might be a risk factor for breast cancer, even in rural areas.  
  Address Department of Preventive Medicine, College of Medicine, Korea University , Seoul , South Korea  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25955405 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1170  
Permanent link to this record
 

 
Author Smolensky, M.H.; Sackett-Lundeen, L.L.; Portaluppi, F. url  doi
openurl 
  Title Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases Type Journal Article
  Year 2015 Publication Chronobiology International Abbreviated Journal (up) Chronobiol Int  
  Volume Issue Pages 1-20  
  Keywords Human Health; Artificial light at night; cancer; circadian time structure; development and disruption; melatonin; sleep/wake cycle disturbance; sunlight; vitamin D; vitamin D deficiency; circadian time structure; circadian rhythm; desynchrony  
  Abstract Routine exposure to artificial light at night (ALAN) in work, home, and community settings is linked with increased risk of breast and prostate cancer (BC, PC) in normally sighted women and men, the hypothesized biological rhythm mechanisms being frequent nocturnal melatonin synthesis suppression, circadian time structure (CTS) desynchronization, and sleep/wake cycle disruption with sleep deprivation. ALAN-induced perturbation of the CTS melatonin synchronizer signal is communicated maternally at the very onset of life and after birth via breast or artificial formula feedings. Nighttime use of personal computers, mobile phones, electronic tablets, televisions, and the like – now epidemic in adolescents and adults and highly prevalent in pre-school and school-aged children – is a new source of ALAN. However, ALAN exposure occurs concomitantly with almost complete absence of daytime sunlight, whose blue-violet (446-484 nm lambda) spectrum synchronizes the CTS and whose UV-B (290-315 nm lambda) spectrum stimulates vitamin D synthesis. Under natural conditions and clear skies, day/night and annual cycles of UV-B irradiation drive corresponding periodicities in vitamin D synthesis and numerous bioprocesses regulated by active metabolites augment and strengthen the biological time structure. Vitamin D insufficiency and deficiency are widespread in children and adults in developed and developing countries as a consequence of inadequate sunlight exposure. Past epidemiologic studies have focused either on exposure to too little daytime UV-B or too much ALAN, respectively, on vitamin D deficiency/insufficiency or melatonin suppression in relation to risk of cancer and other, e.g., psychiatric, hypertensive, cardiac, and vascular, so-called, diseases of civilization. The observed elevated incidence of medical conditions the two are alleged to influence through many complementary bioprocesses of cells, tissues, and organs led us to examine effects of the totality of the artificial light environment in which humans reside today. Never have chronobiologic or epidemiologic investigations comprehensively researched the potentially deleterious consequences of the combination of suppressed vitamin D plus melatonin synthesis due to life in today's man-made artificial light environment, which in our opinion is long overdue.  
  Address c Hypertension Center, S. Anna University Hospital, University of Ferrara , Ferrara , Italy  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26374931 Approved no  
  Call Number IDA @ john @ Serial 1271  
Permanent link to this record
 

 
Author Cho, Y.M.; Ryu, S.-H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. url  doi
openurl 
  Title Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment Type Journal Article
  Year 2015 Publication Chronobiology International Abbreviated Journal (up) Chronobiol. Int.  
  Volume 32 Issue 9 Pages 1294-1310  
  Keywords Artificial light at night; breast cancer; circadian rhythm; light exposure; light pollution  
  Abstract It has frequently been reported that exposure to artificial light at night (ALAN) may cause negative health effects, such as breast cancer, circadian phase disruption and sleep disorders. Here, we reviewed the literature assessing the effects of human exposure to ALAN in order to list the health effects of various aspects of ALAN. Several electronic databases were searched for articles, published through August 2014, related to assessing the effects of exposure to ALAN on human health; these also included the details of experiments on such exposure. A total of 85 articles were included in the review. Several observational studies showed that outdoor ALAN levels are a risk factor for breast cancer and reported that indoor light intensity and individual lighting habits were relevant to this risk. Exposure to artificial bright light during the nighttime suppresses melatonin secretion, increases sleep onset latency (SOL) and increases alertness. Circadian misalignment caused by chronic ALAN exposure may have negative effects on the psychological, cardiovascular and/or metabolic functions. ALAN also causes circadian phase disruption, which increases with longer duration of exposure and with exposure later in the evening. It has also been reported that shorter wavelengths of light preferentially disturb melatonin secretion and cause circadian phase shifts, even if the light is not bright. This literature review may be helpful to understand the health effects of ALAN exposure and suggests that it is necessary to consider various characteristics of artificial light, beyond mere intensity.  
  Address b Department of Preventive Medicine , College of Medicine, Korea University , Seoul , Republic of Korea  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26375320 Approved no  
  Call Number IDA @ john @ Serial 1269  
Permanent link to this record
 

 
Author Newman, R.C.; Ellis, T.; Davison, P.I.; Ives, M.J.; Thomas, R.J.; Griffiths, S.W.; Riley, W.D. url  doi
openurl 
  Title Using novel methodologies to examine the impact of artificial light at night on the cortisol stress response in dispersing Atlantic salmon (Salmo salarL.) fry Type Journal Article
  Year 2015 Publication Conservation Physiology Abbreviated Journal (up) Conserv Physiol  
  Volume 3 Issue 1 Pages cov051  
  Keywords Animals; salmon; Salmo salar; Artificial light at night; Atlantic salmon; cortisol  
  Abstract Artificial light at night (ALAN) is gaining recognition as having an important anthropogenic impact on the environment, yet the behavioural and physiological impacts of this stressor are largely unknown. This dearth of information is particularly true for freshwater ecosystems, which are already heavily impacted by anthropogenic pressures. Atlantic salmon (Salmo salar L.) is a species of conservation and economic importance whose ecology and behaviour is well studied, making it an ideal model species. Recent investigations have demonstrated that salmon show disrupted behaviour in response to artificial light; however, it is not yet clear which physiological processes are behind the observed behavioural modifications. Here, two novel non-invasive sampling methods were used to examine the cortisol stress response of dispersing salmon fry under different artificial lighting intensities. Fish egg and embryos were reared under differing ALAN intensities and individual measures of stress were subsequently taken from dispersing fry using static sampling, whereas population-level measures were achieved using deployed passive samplers. Dispersing fry exposed to experimental confinement showed elevated cortisol levels, indicating the capacity to mount a stress response at this early stage in ontogenesis. However, only one of the two methods for sampling cortisol used in this study indicated that ALAN may act as a stressor to dispersing salmon fry. As such, a cortisol-mediated response to light was not strongly supported. Furthermore, the efficacy of the two non-invasive methodologies used in this study is, subject to further validation, indicative of them proving useful in future ecological studies.  
  Address School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK. Tel: +44 (0) 2920 875 729; newmanrc(at)cardiff.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Journals Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2051-1434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1397  
Permanent link to this record
 

 
Author Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. url  doi
openurl 
  Title Stemming the Tide of Light Pollution Encroaching into Marine Protected Areas: Light pollution in marine protected areas Type Journal Article
  Year 2015 Publication Conservation Letters Abbreviated Journal (up) Conservation Lett.  
  Volume 9 Issue 3 Pages 164–171  
  Keywords Animals; Anthropogenic disturbance; artificial light; marine ecosystems; marine protected areas; pollution  
  Abstract Many marine ecosystems are shaped by regimes of natural light guiding the behavior of their constituent species. As evidenced from terrestrial systems, the global introduction of nighttime lighting is likely influencing these behaviors, restructuring marine ecosystems, and compromising the services they provide. Yet the extent to which marine habitats are exposed to artificial light at night is unknown. We quantified nighttime artificial light across the world's network of marine protected areas (MPAs). Artificial light is widespread and increasing in a large percentage of MPAs. While increases are more common among MPAs associated with human activity, artificial light is encroaching into a large proportion of even those marine habitats protected with the strongest legislative designations. Given the current lack of statutory tools, we propose that allocating “Marine Dark Sky Park” status to MPAs will help incentivize responsible authorities to hold back the advance of artificial light.  
  Address University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK. Thomas.Davies(at)exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755263X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1222  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: